Xuan Mingjun, Lin Xiankun, Shao Jingxin, Dai Luru, He Qiang
State Key Lab of Urban Water Resource and Environment, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080 (PR China).
Chemphyschem. 2015 Jan 12;16(1):147-51. doi: 10.1002/cphc.201402795. Epub 2014 Nov 20.
We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.
我们报道了一种自驱动的Janus二氧化硅微马达,作为一种基于运动的分析方法,用于实现聚电解质微胶囊的快速目标分离,富集水中不同电荷的低分子量有机物。这种自驱动的Janus二氧化硅微马达催化分解过氧化氢燃料,并以126.3μm s⁻¹的速度沿催化剂面的方向移动。生物素功能化的Janus微马达可以特异性地捕获并快速运输链霉亲和素修饰的聚电解质多层胶囊,这能够有效地富集和分离水中不同电荷的有机物。聚电解质多层微胶囊内部填充有强电荷聚电解质,因此在胶囊内的内溶液与本体溶液之间有利于唐南平衡,以捕获水中带相反电荷的有机物。将这些自驱动的Janus二氧化硅微马达和聚电解质多层胶囊集成到一个能够分离和分析带电有机物的芯片实验室装置中,对于各种应用可能具有吸引力。