Vinet Laurent, Lamprianou Smaragda, Babič Andrej, Lange Norbert, Thorel Fabrizio, Herrera Pedro Luis, Montet Xavier, Meda Paolo
Department of Genetic Medicine and Development, University of Geneva, Geneva, CMU, 1 rue Michel-Servet, CH-1211, Geneva 4, Switzerland,
Diabetologia. 2015 Feb;58(2):304-12. doi: 10.1007/s00125-014-3442-2. Epub 2014 Nov 22.
AIMS/HYPOTHESIS: Non-invasive imaging of beta cells is a much-needed development but is one that faces significant biological and technological hurdles. A relevant imaging method should at least allow for an evaluation over time of the mass of beta cells under physiological and pathological conditions, and for an assessment of novel therapies. We, therefore, investigated the ability of a new MRI probe to repeatedly measure the loss of beta cells in a rodent model.
We developed an innovative nanoparticle probe that targets the glucagon-like peptide 1 receptor, and can be used for both fluorescence imaging and MRI. Using fluorescence, we characterised the specificity and biodistribution of the probe. Using 1.5 T MRI, we longitudinally imaged the changes in insulin content in male and female mice of the RIP-DTr strain, which mimic the changes expected in type 1 and type 2 diabetes, respectively.
We showed that this probe selectively labelled beta cells in situ, imaged in vivo native pancreatic islets and evaluated their loss after diphtheria toxin administration, in a model of graded beta cell deletion. Thus, using clinical MRI, the probe quantitatively differentiates, in the same mouse strain, between female animals featuring a 50% loss of beta cells and the males featuring an almost complete loss of beta cells.
CONCLUSIONS/INTERPRETATION: The approach addresses several of the hurdles that have so far limited the non-invasive imaging of beta cells, including the potential to repeatedly monitor the very same animals using clinically available equipment, and to differentiate graded losses of beta cells.
目的/假设:β细胞的无创成像技术是一项迫切需要发展的技术,但面临着重大的生物学和技术障碍。一种相关的成像方法至少应能够在生理和病理条件下对β细胞质量进行长期评估,并能够评估新的治疗方法。因此,我们研究了一种新型MRI探针在啮齿动物模型中反复测量β细胞损失的能力。
我们开发了一种创新的纳米颗粒探针,该探针靶向胰高血糖素样肽1受体,可用于荧光成像和MRI。我们利用荧光对探针的特异性和生物分布进行了表征。利用1.5 T MRI,我们对RIP-DTr品系的雄性和雌性小鼠的胰岛素含量变化进行了纵向成像,这两种小鼠分别模拟了1型和2型糖尿病预期的变化。
我们证明,在分级β细胞缺失模型中,该探针可在原位选择性标记β细胞,对体内天然胰岛进行成像,并评估白喉毒素给药后β细胞的损失情况。因此,使用临床MRI,该探针能够在同一小鼠品系中对β细胞损失50%的雌性动物和β细胞几乎完全损失的雄性动物进行定量区分。
结论/解读:该方法克服了迄今为止限制β细胞无创成像的几个障碍,包括使用临床可用设备对同一动物进行反复监测的可能性,以及区分β细胞分级损失的能力。