Shapoval Oleksandr, Engstová Hana, Šlouf Miroslav, Kočková Olga, Dlasková Andrea, Jabůrek Martin, Halili Aminadav, Mozheitová Alexandra, Jirák Daniel, Ježek Petr, Horák Daniel
Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):42863-42876. doi: 10.1021/acsami.5c11275. Epub 2025 Jul 16.
In the diagnostics of diabetes, specific targeting of drugs (e.g., liraglutide) to insulin-deficient β-cells with their simultaneous noninvasive imaging is currently needed. In this report, liraglutide (LGL)-conjugated poly(methyl vinyl ether--maleic acid) (PMVEMA)-coated core-shell NaYF:Yb,Er,Fe@NaYF:Nd upconversion nanoparticles (CS-UCNPs) have been developed, thoroughly physicochemically characterized, and evaluated . Novel codoping of Fe, Yb, and Er ions in the host NaYF induced upconversion emission in the red region at both 980 and 808 nm excitation, making the particles suitable for deep-tissue imaging. Surface functionalization with PMVEMA provided colloidal stability and facilitated covalent conjugation with LGL, enabling targeted binding to GLP-1 receptors on pancreatic β-cells, increasing glucose-stimulated insulin secretion from isolated Langerhans islets. Biocompatibility of CS-UCNP@PMVEMA-LGL nanoparticles was confirmed by the trypan blue dye exclusion assay. When the fluorescent dye Flamma was conjugated to the nanoparticles, fluorescence imaging revealed significantly enhanced accumulation of CS-UCNP@PMVEMA-LGL-Flamma nanoparticles in the pancreas 24 h after intramuscular injection compared with intravenous administration, with luminescence intensity approximately doubled. The improved pancreatic targeting efficiency was attributed to enhanced binding to GLP-1 receptors. Confocal microscopy and elemental analysis confirmed receptor-mediated uptake of the nanoparticles by internalization and their localization within pancreatic β-cells. These findings highlight the potential of CS-UCNP@PMVEMA-LGL nanoparticles as biocompatible targetable imaging agents with future applications in pancreatic diagnostics.
在糖尿病诊断中,目前需要将药物(如利拉鲁肽)特异性靶向胰岛素缺乏的β细胞,并同时进行无创成像。在本报告中,已开发出利拉鲁肽(LGL)共轭的聚(甲基乙烯基醚-马来酸)(PMVEMA)包覆的核壳型NaYF:Yb,Er,Fe@NaYF:Nd上转换纳米颗粒(CS-UCNPs),对其进行了全面的物理化学表征和评估。在主体NaYF中对Fe、Yb和Er离子进行新型共掺杂,在980和808 nm激发下均能在红色区域产生上转换发射,使这些颗粒适用于深部组织成像。用PMVEMA进行表面功能化提供了胶体稳定性,并促进了与LGL的共价结合,使其能够靶向结合胰腺β细胞上的GLP-1受体,增加从分离的胰岛中葡萄糖刺激的胰岛素分泌。通过台盼蓝染料排除试验证实了CS-UCNP@PMVEMA-LGL纳米颗粒的生物相容性。当荧光染料Flamma与纳米颗粒共轭时,荧光成像显示,与静脉注射相比,肌肉注射后24小时CS-UCNP@PMVEMA-LGL-Flamma纳米颗粒在胰腺中的积累显著增强,发光强度约增加一倍。胰腺靶向效率的提高归因于与GLP-1受体结合的增强。共聚焦显微镜和元素分析证实了纳米颗粒通过内化作用被受体介导摄取并定位在胰腺β细胞内。这些发现突出了CS-UCNP@PMVEMA-LGL纳米颗粒作为生物相容性可靶向成像剂在胰腺诊断未来应用中的潜力。