Suppr超能文献

呼吸运动对肺癌最坏情况优化调强质子治疗的影响。

Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.

作者信息

Liu Wei, Liao Zhongxing, Schild Steven E, Liu Zhong, Li Heng, Li Yupeng, Park Peter C, Li Xiaoqiang, Stoker Joshua, Shen Jiajian, Keole Sameer, Anand Aman, Fatyga Mirek, Dong Lei, Sahoo Narayan, Vora Sujay, Wong William, Zhu X Ronald, Bues Martin, Mohan Radhe

机构信息

Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona; Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Pract Radiat Oncol. 2015 Mar-Apr;5(2):e77-86. doi: 10.1016/j.prro.2014.08.002. Epub 2014 Sep 11.

Abstract

PURPOSE

We compared conventionally optimized intensity modulated proton therapy (IMPT) treatment plans against worst-case scenario optimized treatment plans for lung cancer. The comparison of the 2 IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient setup, inherent proton range uncertainty, and dose perturbation caused by respiratory motion.

METHODS AND MATERIALS

For each of the 9 lung cancer cases, 2 treatment plans were created that accounted for treatment uncertainties in 2 different ways. The first used the conventional method: delivery of prescribed dose to the planning target volume that is geometrically expanded from the internal target volume (ITV). The second used a worst-case scenario optimization scheme that addressed setup and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of changes in patient anatomy attributable to respiratory motion were investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the 2 groups were compared with 2-sided paired Student t tests.

RESULTS

Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to planning target volume-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality (D95% ITV, 96.6% vs 96.1% [P = .26]; D5%- D95% ITV, 10.0% vs 12.3% [P = .082]; D1% spinal cord, 31.8% vs 36.5% [P = .035]).

CONCLUSIONS

Worst-case scenario optimization led to superior solutions for lung IMPT. Despite the fact that worst-case scenario optimization did not explicitly account for respiratory motion, it produced motion-resistant treatment plans. However, further research is needed to incorporate respiratory motion into IMPT robust optimization.

摘要

目的

我们将传统优化的调强质子治疗(IMPT)计划与肺癌的最坏情况优化治疗计划进行了比较。两种IMPT优化策略的比较重点在于所得计划在患者摆位、质子固有射程不确定性以及呼吸运动引起的剂量扰动影响下保持剂量目标的能力。

方法和材料

对于9例肺癌病例中的每一例,创建了2个治疗计划,以两种不同方式考虑治疗不确定性。第一个采用传统方法:将规定剂量输送到从内部靶区(ITV)几何扩展的计划靶区(PTV)。第二个采用最坏情况优化方案,通过子野优化解决摆位和射程不确定性问题。计算并比较了计划的最优性和稳健性。此外,通过比较吸气末和呼气末阶段的相应计划评估指标以及这些阶段之间的绝对差异,研究了两种策略中呼吸运动引起的患者解剖结构变化对剂量分布的影响。两组的平均计划评估指标采用双侧配对t检验进行比较。

结果

在不考虑呼吸运动的情况下,我们确认在计划稳健性和最优性方面,最坏情况优化优于基于计划靶区的传统优化。在考虑呼吸运动的情况下,最坏情况优化对于靶区仍能实现对呼吸运动更稳健的剂量分布,并且计划最优性相当甚至更好(D95% ITV,96.6% 对 96.1% [P = 0.26];D5%-D95% ITV,10.0% 对 12.3% [P = 0.082];D1%脊髓,31.8% 对 36.5% [P = 0.035])。

结论

最坏情况优化为肺癌IMPT带来了更好的解决方案。尽管最坏情况优化没有明确考虑呼吸运动,但它产生了抗运动的治疗计划。然而,需要进一步研究将呼吸运动纳入IMPT稳健优化。

相似文献

1
Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.
Pract Radiat Oncol. 2015 Mar-Apr;5(2):e77-86. doi: 10.1016/j.prro.2014.08.002. Epub 2014 Sep 11.
8
Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer.
Int J Radiat Oncol Biol Phys. 2016 May 1;95(1):523-533. doi: 10.1016/j.ijrobp.2015.11.002. Epub 2015 Nov 10.
9
Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients.
Radiother Oncol. 2015 Mar;114(3):367-72. doi: 10.1016/j.radonc.2015.01.017. Epub 2015 Feb 20.
10
Robust optimization of intensity modulated proton therapy.
Med Phys. 2012 Feb;39(2):1079-91. doi: 10.1118/1.3679340.

引用本文的文献

7
Artificial general intelligence for radiation oncology.
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100045. Epub 2023 Nov 24.
8
[Not Available].
Med Phys. 2024 Mar;51(3):2187-2199. doi: 10.1002/mp.16965. Epub 2024 Feb 6.
9
Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm.
Phys Imaging Radiat Oncol. 2023 Jun 24;27:100465. doi: 10.1016/j.phro.2023.100465. eCollection 2023 Jul.

本文引用的文献

1
Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.
Phys Med Biol. 2013 Jun 21;58(12):4137-56. doi: 10.1088/0031-9155/58/12/4137. Epub 2013 May 20.
2
Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer.
Int J Radiat Oncol Biol Phys. 2013 Jun 1;86(2):380-6. doi: 10.1016/j.ijrobp.2013.01.024. Epub 2013 Feb 22.
3
Advantages and limitations of the 'worst case scenario' approach in IMPT treatment planning.
Phys Med Biol. 2013 Mar 7;58(5):1323-39. doi: 10.1088/0031-9155/58/5/1323. Epub 2013 Feb 8.
5
Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration.
Phys Med Biol. 2012 Jul 7;57(13):4095-115. doi: 10.1088/0031-9155/57/13/4095. Epub 2012 Jun 7.
7
Including robustness in multi-criteria optimization for intensity-modulated proton therapy.
Phys Med Biol. 2012 Feb 7;57(3):591-608. doi: 10.1088/0031-9155/57/3/591. Epub 2012 Jan 6.
8
Dosimetric consequences of tumour motion due to respiration for a scanned proton beam.
Phys Med Biol. 2011 Oct 21;56(20):6563-81. doi: 10.1088/0031-9155/56/20/003. Epub 2011 Sep 21.
9
A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties.
Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):e329-36. doi: 10.1016/j.ijrobp.2011.05.011. Epub 2011 Jun 22.
10
Minimax optimization for handling range and setup uncertainties in proton therapy.
Med Phys. 2011 Mar;38(3):1672-84. doi: 10.1118/1.3556559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验