Suppr超能文献

利用多元自适应回归样条对西班牙西北部奥维耶多市区的空气质量进行建模。

Air quality modeling in the Oviedo urban area (NW Spain) by using multivariate adaptive regression splines.

作者信息

Nieto P J García, Antón J C Álvarez, Vilán J A Vilán, García-Gonzalo E

机构信息

Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain,

出版信息

Environ Sci Pollut Res Int. 2015 May;22(9):6642-59. doi: 10.1007/s11356-014-3800-0. Epub 2014 Nov 21.

Abstract

The aim of this research work is to build a regression model of air quality by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (northern Spain) at a local scale. To accomplish the objective of this study, the experimental data set made up of nitrogen oxides (NO x ), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and dust (PM10) was collected over 3 years (2006-2008). The US National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the MARS technique, conclusions of this research work are exposed.

摘要

本研究工作的目的是在西班牙北部奥维耶多市区的局部尺度上,运用多元自适应回归样条(MARS)技术构建空气质量回归模型。为实现本研究目标,在3年时间(2006 - 2008年)内收集了由氮氧化物(NOx)、一氧化碳(CO)、二氧化硫(SO2)、臭氧(O3)和粉尘(PM10)组成的实验数据集。美国国家环境空气质量标准(NAAQS)规定了大气中主要污染物的限值,以确保健康人群的健康。首先,这个MARS回归模型捕捉了统计学习理论的主要理念,以便对奥维耶多市区主要污染物之间的相关性进行良好预测。其次,MARS的主要优点在于它能够生成简单、易于解释的模型,能够估计输入变量的贡献,以及具有计算效率。最后,基于这些数值计算,运用MARS技术,阐述了本研究工作的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验