Suppr超能文献

结构化学基因组学时代药物研究的量子力学方法

Quantum Mechanics Approaches to Drug Research in the Era of Structural Chemogenomics.

作者信息

Ilatovskiy Andrey V, Abagyan Ruben, Kufareva Irina

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA, 92093 ; Division of Molecular and Radiation Biophysics, Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia, 188300.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA, 92093.

出版信息

Int J Quantum Chem. 2013 Jun 15;113(12):1669-1675. doi: 10.1002/qua.24400.

Abstract

The rapid growth of the available crystallographic information about proteins and binding pockets creates remarkable opportunities for enriching the drug research pipelines with computational prediction of novel protein-ligand interactions. While quantum mechanical approaches are known to provide unprecedented accuracy in structure-based binding energy calculations, they are limited to only small systems of dozens of atoms. In the structural chemogenomics era, it is critical that new approaches are developed that enable application of QM methodologies to non-covalent interactions in systems as large as protein-ligand complexes and conformational ensembles. This perspective highlights recent advances towards bridging the gap between high accuracy and high volume computations in drug research.

摘要

关于蛋白质和结合口袋的现有晶体学信息的快速增长,为通过计算预测新型蛋白质-配体相互作用来丰富药物研究流程创造了显著机遇。虽然量子力学方法在基于结构的结合能计算中具有前所未有的准确性,但它们仅限于由几十个原子组成的小系统。在结构化学基因组学时代,开发新方法以使量子力学方法能够应用于蛋白质-配体复合物和构象集合等大系统中的非共价相互作用至关重要。本文观点突出了在药物研究中弥合高精度和高容量计算之间差距的最新进展。

相似文献

1
Quantum Mechanics Approaches to Drug Research in the Era of Structural Chemogenomics.
Int J Quantum Chem. 2013 Jun 15;113(12):1669-1675. doi: 10.1002/qua.24400.
3
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
4
Quantum Chemical Approaches in Structure-Based Virtual Screening and Lead Optimization.
Front Chem. 2018 May 29;6:188. doi: 10.3389/fchem.2018.00188. eCollection 2018.
5
Fragment quantum mechanical calculation of proteins and its applications.
Acc Chem Res. 2014 Sep 16;47(9):2748-57. doi: 10.1021/ar500077t. Epub 2014 May 22.
6
Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods.
Annu Rev Phys Chem. 2008;59:573-601. doi: 10.1146/annurev.physchem.59.032607.093618.
7
Pocketome: an encyclopedia of small-molecule binding sites in 4D.
Nucleic Acids Res. 2012 Jan;40(Database issue):D535-40. doi: 10.1093/nar/gkr825. Epub 2011 Nov 12.
9
QM Implementation in Drug Design: Does It Really Help?
Methods Mol Biol. 2020;2114:19-35. doi: 10.1007/978-1-0716-0282-9_2.
10
Calculations on noncovalent interactions and databases of benchmark interaction energies.
Acc Chem Res. 2012 Apr 17;45(4):663-72. doi: 10.1021/ar200255p. Epub 2012 Jan 6.

引用本文的文献

2
Testing standard basis sets for direct ionizations: H + H at E = 0.1-100 keV.
J Comput Chem. 2024 Apr 15;45(10):671-682. doi: 10.1002/jcc.27272. Epub 2023 Dec 14.
4
Thermally activated delayed fluorescence in luminescent cationic copper(i) complexes.
RSC Adv. 2022 Apr 6;12(17):10653-10674. doi: 10.1039/d1ra08082b. eCollection 2022 Mar 31.
5
6
Quantum mechanics implementation in drug-design workflows: does it really help?
Drug Des Devel Ther. 2017 Aug 31;11:2551-2564. doi: 10.2147/DDDT.S126344. eCollection 2017.
8
Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches.
J Chem Theory Comput. 2014 Apr 8;10(4):1563-1575. doi: 10.1021/ct401111c. Epub 2014 Feb 25.

本文引用的文献

1
Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods.
J Chem Theory Comput. 2012 Jan 10;8(1):141-51. doi: 10.1021/ct200751e. Epub 2011 Dec 22.
2
Compound activity prediction using models of binding pockets or ligand properties in 3D.
Curr Top Med Chem. 2012;12(17):1869-82. doi: 10.2174/156802612804547335.
3
GAMESS as a free quantum-mechanical platform for drug research.
Curr Top Med Chem. 2012;12(18):2013-33. doi: 10.2174/156802612804910269.
4
5
AutoBind: automatic extraction of protein-ligand-binding affinity data from biological literature.
Bioinformatics. 2012 Aug 15;28(16):2162-8. doi: 10.1093/bioinformatics/bts367. Epub 2012 Jul 2.
6
Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.
J Chem Theory Comput. 2012 Jun 12;8(6):2023-2033. doi: 10.1021/ct3002738. Epub 2012 May 11.
7
Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors.
Structure. 2012 Jun 6;20(6):967-76. doi: 10.1016/j.str.2012.04.010.
8
Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W415-22. doi: 10.1093/nar/gks515. Epub 2012 Jun 4.
9
The increasing role of QM/MM in drug discovery.
Adv Protein Chem Struct Biol. 2012;87:337-62. doi: 10.1016/B978-0-12-398312-1.00011-1.
10
Docking and scoring with ICM: the benchmarking results and strategies for improvement.
J Comput Aided Mol Des. 2012 Jun;26(6):675-86. doi: 10.1007/s10822-012-9547-0. Epub 2012 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验