Radoń Mariusz, Drabik Gabriela, Hodorowicz Maciej, Szklarzewicz Janusz
Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland
Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland.
Chem Sci. 2024 Oct 28;15(48):20189-20204. doi: 10.1039/d4sc05471g. eCollection 2024 Dec 11.
Accurate prediction of spin-state energetics for transition metal (TM) complexes is a compelling problem in applied quantum chemistry, with enormous implications for modeling catalytic reaction mechanisms and computational discovery of materials. Computed spin-state energetics are strongly method-dependent and credible reference data are scarce, making it difficult to conduct conclusive computational studies of open-shell TM systems. Here, we present a novel benchmark set of first-row TM spin-state energetics, which is derived from experimental data of 17 complexes containing Fe, Fe, Co, Co, Mn, and Ni with chemically diverse ligands. The estimates of adiabatic or vertical spin-state splittings, which are obtained from spin crossover enthalpies or energies of spin-forbidden absorption bands, suitably back-corrected for the vibrational and environmental effects, are employed as reference values for benchmarking density functional theory (DFT) and wave function methods. The results demonstrate a high accuracy of the coupled-cluster CCSD(T) method, which features the mean absolute error (MAE) of 1.5 kcal mol and maximum error of -3.5 kcal mol, and outperforms all the tested multireference methods: CASPT2, MRCI+Q, CASPT2/CC and CASPT2+δMRCI. Switching from Hartree-Fock to Kohn-Sham orbitals is not found to consistently improve the CCSD(T) accuracy. The best performing DFT methods are double-hybrids (PWPB95-D3(BJ), B2PLYP-D3(BJ)) with the MAEs below 3 kcal mol and maximum errors within 6 kcal mol, whereas the DFT methods so far recommended for spin states (, B3LYP*-D3(BJ) and TPSSh-D3(BJ)) are found to perform much worse with the MAEs of 5-7 kcal mol and maximum errors beyond 10 kcal mol. This work is the first such extensive benchmark study of quantum chemistry methods for TM spin-state energetics making use of experimental reference data. The results are relevant for the proper choice of methods to characterize TM systems in computational catalysis and (bio)inorganic chemistry, and may also stimulate new developments in quantum-chemical or machine learning approaches.
准确预测过渡金属(TM)配合物的自旋态能量学是应用量子化学中一个引人关注的问题,对催化反应机理建模和材料的计算发现具有重大意义。计算得到的自旋态能量学强烈依赖于方法,且可靠的参考数据稀缺,这使得对开壳层TM体系进行确定性的计算研究变得困难。在此,我们提出了一组新颖的第一行TM自旋态能量学基准集,它源自17种含有Fe、Fe、Co、Co、Mn和Ni且配体化学性质多样的配合物的实验数据。从自旋交叉焓或自旋禁阻吸收带的能量中获得的绝热或垂直自旋态分裂的估计值,并对振动和环境效应进行了适当的反向校正,用作基准密度泛函理论(DFT)和波函数方法的参考值。结果表明耦合簇CCSD(T)方法具有很高的准确性,其平均绝对误差(MAE)为1.5 kcal/mol,最大误差为-3.5 kcal/mol,优于所有测试的多参考方法:CASPT2、MRCI+Q、CASPT2/CC和CASPT2+δMRCI。未发现从Hartree-Fock轨道切换到Kohn-Sham轨道能持续提高CCSD(T)的准确性。表现最佳的DFT方法是双杂化方法(PWPB95-D3(BJ)、B2PLYP-D3(BJ)),MAE低于3 kcal/mol,最大误差在6 kcal/mol以内,而目前推荐用于自旋态的DFT方法(,B3LYP*-D3(BJ)和TPSSh-D3(BJ))表现则差得多,MAE为5-7 kcal/mol,最大误差超过10 kcal/mol。这项工作是首次利用实验参考数据对TM自旋态能量学的量子化学方法进行如此广泛的基准研究。这些结果对于在计算催化和(生物)无机化学中表征TM体系时正确选择方法具有重要意义,也可能刺激量子化学或机器学习方法的新发展。