Suppr超能文献

使用量子力学能量模型计算主客体结合亲和力

Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.

作者信息

Muddana Hari S, Gilson Michael K

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0736.

出版信息

J Chem Theory Comput. 2012 Jun 12;8(6):2023-2033. doi: 10.1021/ct3002738. Epub 2012 May 11.

Abstract

The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.

摘要

蛋白质-配体结合亲和力的预测是计算机辅助药物发现的核心关注点,但仍难以实现高度准确。近期研究表明,现有的力场可能是误差的一个关键来源,这促使了本研究的开展。本研究报告了首个基于量子力学能量模型而非经验力场的挖掘极小值(M2)结合亲和力计算。我们将半经验量子力学能量函数PM6-DH+与COSMO溶剂化模型相结合,应用于29个具有广泛测量结合亲和力的主客体系统。在对似乎源于极性溶剂化处理的系统误差进行校正后,计算得到的绝对结合亲和力与实验测量值吻合良好,平均误差为1.6千卡/摩尔,相关系数为0.91。这些计算还描绘了各种能量成分,包括溶质能量、构型熵和溶剂化自由能,对这些主客体复合物结合自由能的贡献。与我们之前使用经验力场的计算结果相比,结合自由能的能量和熵成分存在显著差异。本研究证明了量子力学哈密顿量与M2亲和力方法的成功结合。

相似文献

6
Tuning Potential Functions to Host-Guest Binding Data.调整势能函数以适应主客体结合数据。
J Chem Theory Comput. 2024 Jan 9;20(1):239-252. doi: 10.1021/acs.jctc.3c01050. Epub 2023 Dec 26.

引用本文的文献

3
Recent Developments and Applications of the MMPBSA Method.MMPBSA方法的最新进展与应用
Front Mol Biosci. 2018 Jan 10;4:87. doi: 10.3389/fmolb.2017.00087. eCollection 2017.
10
Enhanced semiempirical QM methods for biomolecular interactions.用于生物分子相互作用的增强半经验量子力学方法。
Comput Struct Biotechnol J. 2015 Feb 28;13:169-75. doi: 10.1016/j.csbj.2015.02.004. eCollection 2015.

本文引用的文献

5
Blind prediction of host-guest binding affinities: a new SAMPL3 challenge.盲法预测主客体结合亲和力:SAMPL3 挑战赛新课题。
J Comput Aided Mol Des. 2012 May;26(5):475-87. doi: 10.1007/s10822-012-9554-1. Epub 2012 Feb 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验