Skoura Angeliki, Bakic Predrag R, Megalooikonomou Vasilis
Computer Engineering and Informatics Department, University of Patras, Greece.
Department of Radiology, University of Pennsylvania, Philadelphia, USA.
J Theor Appl Comput Sci. 2013;7(1):3-19.
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.
对医学图像中可视化的解剖树形结构进行分析,有助于深入了解树形拓扑结构与相应器官病理之间的关系。在本文中,我们提出了三种方法来提取分支拓扑的描述性特征:不对称指数、使用节点标记方案对分支模式进行编码以及对肖尔分析的扩展。基于这些描述符,我们针对潜在病理提出了树形拓扑的分类方案。此外,我们提出了一种分类器集成方法,该方法结合各个分类器的预测结果以优化分类准确性。我们将所提出的方法应用于乳腺X线造影片数据集(一种可视化乳腺导管树的医学图像),以识别具有乳腺癌放射学表现的图像。实验结果表明,与现有技术相比,所提出的框架是有效的,这表明所提出的描述符提供了关于导管树拓扑模式的更有价值的信息,并显示了促进早期乳腺癌诊断的潜力。