Suppr超能文献

基于模糊秩的 CNN 模型集成用于宫颈细胞学分类。

A fuzzy rank-based ensemble of CNN models for classification of cervical cytology.

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.

Department of Electrical Engineering, Jadavpur University, Kolkata, 700032, India.

出版信息

Sci Rep. 2021 Jul 15;11(1):14538. doi: 10.1038/s41598-021-93783-8.

Abstract

Cervical cancer affects more than 0.5 million women annually causing more than 0.3 million deaths. Detection of cancer in its early stages is of prime importance for eradicating the disease from the patient's body. However, regular population-wise screening of cancer is limited by its expensive and labour intensive detection process, where clinicians need to classify individual cells from a stained slide consisting of more than 100,000 cervical cells, for malignancy detection. Thus, Computer-Aided Diagnosis (CAD) systems are used as a viable alternative for easy and fast detection of cancer. In this paper, we develop such a method where we form an ensemble-based classification model using three Convolutional Neural Network (CNN) architectures, namely Inception v3, Xception and DenseNet-169 pre-trained on ImageNet dataset for Pap stained single cell and whole-slide image classification. The proposed ensemble scheme uses a fuzzy rank-based fusion of classifiers by considering two non-linear functions on the decision scores generated by said base learners. Unlike the simple fusion schemes that exist in the literature, the proposed ensemble technique makes the final predictions on the test samples by taking into consideration the confidence in the predictions of the base classifiers. The proposed model has been evaluated on two publicly available benchmark datasets, namely, the SIPaKMeD Pap Smear dataset and the Mendeley Liquid Based Cytology (LBC) dataset, using a 5-fold cross-validation scheme. On the SIPaKMeD Pap Smear dataset, the proposed framework achieves a classification accuracy of 98.55% and sensitivity of 98.52% in its 2-class setting, and 95.43% accuracy and 98.52% sensitivity in its 5-class setting. On the Mendeley LBC dataset, the accuracy achieved is 99.23% and sensitivity of 99.23%. The results obtained outperform many of the state-of-the-art models, thereby justifying the effectiveness of the same. The relevant codes of this proposed model are publicly available on GitHub .

摘要

宫颈癌每年影响超过 50 万女性,导致超过 30 万人死亡。早期发现癌症对于从患者体内消除疾病至关重要。然而,由于癌症检测过程昂贵且劳动强度大,常规的人群筛查受到限制,临床医生需要从包含超过 100,000 个宫颈细胞的染色载玻片上对单个细胞进行分类,以进行恶性肿瘤检测。因此,计算机辅助诊断 (CAD) 系统被用作一种可行的替代方法,用于轻松快速地检测癌症。在本文中,我们开发了一种方法,该方法使用三种卷积神经网络 (CNN) 架构(即 Inception v3、Xception 和 DenseNet-169)构建基于集成的分类模型,这些模型是在 ImageNet 数据集上进行预训练的,用于对巴氏染色的单细胞和全幻灯片图像进行分类。所提出的集成方案使用基于模糊等级的分类器融合,通过考虑在所述基础学习者生成的决策分数上的两个非线性函数。与文献中存在的简单融合方案不同,所提出的集成技术通过考虑基础分类器预测的置信度,对测试样本进行最终预测。所提出的模型已在两个公开可用的基准数据集上进行了评估,即 SIPaKMeD 巴氏涂片数据集和 Mendeley 液基细胞学 (LBC) 数据集,使用 5 折交叉验证方案。在 SIPaKMeD 巴氏涂片数据集上,所提出的框架在其 2 类设置中实现了 98.55%的分类精度和 98.52%的灵敏度,在其 5 类设置中实现了 95.43%的精度和 98.52%的灵敏度。在 Mendeley LBC 数据集上,获得的准确度为 99.23%,灵敏度为 99.23%。所获得的结果优于许多最先进的模型,从而证明了该模型的有效性。该模型的相关代码在 GitHub 上公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9a/8282795/57aed66df1cc/41598_2021_93783_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验