Megalooikonomou Vasileios, Barnathan Michael, Kontos Despina, Bakic Predrag R, Maidment Andrew D A
Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122 USA.
IEEE Trans Med Imaging. 2009 Apr;28(4):487-93. doi: 10.1109/TMI.2008.929102. Epub 2008 Aug 8.
We propose a multistep approach for representing and classifying tree-like structures in medical images. Tree-like structures are frequently encountered in biomedical contexts; examples are the bronchial system, the vascular topology, and the breast ductal network. We use tree encoding techniques, such as the depth-first string encoding and the PrUfer encoding, to obtain a symbolic string representation of the tree's branching topology; the problem of classifying trees is then reduced to string classification. We use the tf-idf text mining technique to assign a weight of significance to each string term (i.e., tree node label). Similarity searches and k-nearest neighbor classification of the trees is performed using the tf-idf weight vectors and the cosine similarity metric. We applied our approach to characterize the ductal tree-like parenchymal structure in X-ray galactograms, in order to distinguish among different radiological findings. Experimental results demonstrate the effectiveness of the proposed approach with classification accuracy reaching up to 86%, and also indicate that our method can potentially aid in providing insight to the relationship between branching patterns and function or pathology.
我们提出了一种用于表示和分类医学图像中树状结构的多步骤方法。树状结构在生物医学环境中经常遇到;例如支气管系统、血管拓扑结构和乳腺导管网络。我们使用树编码技术,如深度优先字符串编码和普吕弗编码,来获得树的分支拓扑的符号字符串表示;然后将树的分类问题简化为字符串分类。我们使用tf-idf文本挖掘技术为每个字符串项(即树节点标签)赋予一个重要性权重。使用tf-idf权重向量和余弦相似性度量对树进行相似性搜索和k近邻分类。我们应用我们的方法来表征X线乳腺造影片中导管状的实质结构,以便区分不同的放射学表现。实验结果证明了所提出方法的有效性,分类准确率高达86%,并且还表明我们的方法可能有助于深入了解分支模式与功能或病理学之间的关系。