Tahti Elise F, Blount Jadon M, Jackson Sophie N, Gao Melody, Gill Nicholas P, Smith Sarah N, Pederson Nick J, Rumph Simone N, Struyvenberg Sarah A, Mackley Iain G P, Madden Dean R, Amacher Jeanine F
Department of Chemistry, Western Washington University, Bellingham, WA, USA.
Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
bioRxiv. 2023 Jan 10:2022.12.31.522388. doi: 10.1101/2022.12.31.522388.
Protein-protein interactions that include recognition of short sequences of amino acids, or peptides, are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are an example of a peptide-binding domain located in several intracellular signaling and trafficking pathways, which form interactions critical for the regulation of receptor endocytic trafficking, tight junction formation, organization of supramolecular complexes in neurons, and other biological systems. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had a marginal effect on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
包括对氨基酸短序列或肽段识别的蛋白质 - 蛋白质相互作用在细胞过程中至关重要。蛋白质 - 肽段相互作用的表面积相对较小且较浅,并且在肽段结合结构域家族中常常存在重叠的特异性。因此,剖析选择性决定因素可能具有挑战性。PDZ结构域是位于几种细胞内信号传导和运输途径中的肽段结合结构域的一个例子,其形成的相互作用对于调节受体内吞运输、紧密连接形成、神经元中超分子复合物的组织以及其他生物系统至关重要。这些结构域也是病原体的直接作用靶点,许多致癌病毒蛋白的一个标志就是具有PDZ结合基序。然而,在靶向PDZ结构域的序列中,相对的混杂程度存在很大差异。例如,病毒HPV16 E6癌蛋白在细胞中识别的含PDZ结构域的蛋白数量是囊性纤维化跨膜电导调节因子(CFTR)的两倍多,尽管它们具有相似的PDZ靶向序列和相同的基序残基。在这里,我们使用与野生型和杂交序列匹配的肽段,测定了已知仅与HPV16 E6结合或同时与CFTR和HPV16 E6结合的PDZ结构域的结合亲和力。我们还使用能量最小化来模拟PDZ - 肽段复合物,并使用序列分析来研究这种差异。我们发现,虽然大多数单突变对整体亲和力的影响很小,但对结合自由能的累加效应准确地描述了观察到的选择性。综上所述,我们的结果描述了细胞中复杂且不同的PDZ相互作用组是如何被编程的。