De Napoli M, Romano F, D'Urso D, Licciardello T, Agodi C, Candiano G, Cappuzzello F, Cirrone G A P, Cuttone G, Musumarra A, Pandola L, Scuderi V
INFN-Sezione di Catania, 64, Via S. Sofia, I-95123 Catania, Italy.
Phys Med Biol. 2014 Dec 21;59(24):7643-52. doi: 10.1088/0031-9155/59/24/7643.
When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned.Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u(-1) (12)C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.
当碳束与人体组织相互作用时,会在肿瘤区域和周围健康组织中产生许多次级碎片。因此,在强子治疗中,精确的剂量计算需要配备复杂核反应模型的蒙特卡罗工具。然而,为了获得现实的预测结果,模拟代码必须根据实验结果进行验证;数据集越广泛,模型就越能得到精细调整。由于文献中没有费米能量下组织等效材料的碎片数据,我们测量了55.6 MeV u(-1) (12)C束与厚肌肉和皮质骨靶相互作用产生的次级碎片。geant4蒙特卡罗代码使用的三种反应模型,即二元轻离子级联模型、量子分子动力学模型和列日核内级联模型,已根据收集的数据进行了基准测试。在这项工作中,我们展示了实验结果,并讨论了上述模型的预测能力。