Suppr超能文献

抗微小RNA-21寡核苷酸通过刺激代谢途径预防奥尔波特肾病进展。

Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways.

作者信息

Gomez Ivan G, MacKenna Deidre A, Johnson Bryce G, Kaimal Vivek, Roach Allie M, Ren Shuyu, Nakagawa Naoki, Xin Cuiyan, Newitt Rick, Pandya Shweta, Xia Tai-He, Liu Xueqing, Borza Dorin-Bogdan, Grafals Monica, Shankland Stuart J, Himmelfarb Jonathan, Portilla Didier, Liu Shiguang, Chau B Nelson, Duffield Jeremy S

出版信息

J Clin Invest. 2015 Jan;125(1):141-56. doi: 10.1172/JCI75852. Epub 2014 Nov 21.

Abstract

MicroRNA-21 (miR-21) contributes to the pathogenesis of fibrogenic diseases in multiple organs, including the kidneys, potentially by silencing metabolic pathways that are critical for cellular ATP generation, ROS production, and inflammatory signaling. Here, we developed highly specific oligonucleotides that distribute to the kidney and inhibit miR-21 function when administered subcutaneously and evaluated the therapeutic potential of these anti-miR-21 oligonucleotides in chronic kidney disease. In a murine model of Alport nephropathy, miR-21 silencing did not produce any adverse effects and resulted in substantially milder kidney disease, with minimal albuminuria and dysfunction, compared with vehicle-treated mice. miR-21 silencing dramatically improved survival of Alport mice and reduced histological end points, including glomerulosclerosis, interstitial fibrosis, tubular injury, and inflammation. Anti-miR-21 enhanced PPARα/retinoid X receptor (PPARα/RXR) activity and downstream signaling pathways in glomerular, tubular, and interstitial cells. Moreover, miR-21 silencing enhanced mitochondrial function, which reduced mitochondrial ROS production and thus preserved tubular functions. Inhibition of miR-21 was protective against TGF-β-induced fibrogenesis and inflammation in glomerular and interstitial cells, likely as the result of enhanced PPARα/RXR activity and improved mitochondrial function. Together, these results demonstrate that inhibition of miR-21 represents a potential therapeutic strategy for chronic kidney diseases including Alport nephropathy.

摘要

微小RNA-21(miR-21)在包括肾脏在内的多个器官的纤维化疾病发病机制中起作用,可能是通过使对细胞ATP生成、ROS产生和炎症信号传导至关重要的代谢途径沉默来实现的。在此,我们开发了高度特异性的寡核苷酸,当皮下给药时可分布到肾脏并抑制miR-21功能,并评估了这些抗miR-21寡核苷酸在慢性肾病中的治疗潜力。在阿尔波特肾病的小鼠模型中,与载体处理的小鼠相比,miR-21沉默未产生任何不良反应,并且导致肾病明显减轻,蛋白尿和功能障碍最小。miR-21沉默显著提高了阿尔波特小鼠的存活率,并减少了组织学终点,包括肾小球硬化、间质纤维化、肾小管损伤和炎症。抗miR-21增强了肾小球、肾小管和间质细胞中的PPARα/视黄酸X受体(PPARα/RXR)活性和下游信号通路。此外,miR-21沉默增强了线粒体功能,减少了线粒体ROS的产生,从而保留了肾小管功能。抑制miR-21对TGF-β诱导的肾小球和间质细胞纤维化和炎症具有保护作用,这可能是PPARα/RXR活性增强和线粒体功能改善的结果。总之,这些结果表明,抑制miR-21代表了包括阿尔波特肾病在内的慢性肾病的一种潜在治疗策略。

相似文献

1
Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways.
J Clin Invest. 2015 Jan;125(1):141-56. doi: 10.1172/JCI75852. Epub 2014 Nov 21.
2
Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome.
Hum Gene Ther. 2019 Jul;30(7):865-881. doi: 10.1089/hum.2018.205. Epub 2019 Mar 29.
3
Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome.
Kidney Int. 2017 Jun;91(6):1347-1361. doi: 10.1016/j.kint.2016.12.022. Epub 2017 Feb 27.
4
Albumin contributes to kidney disease progression in Alport syndrome.
Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F120-30. doi: 10.1152/ajprenal.00456.2015. Epub 2016 May 4.
6
Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease.
J Am Soc Nephrol. 2005 Apr;16(4):977-85. doi: 10.1681/ASN.2004100871. Epub 2005 Feb 16.
7
MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways.
Sci Transl Med. 2012 Feb 15;4(121):121ra18. doi: 10.1126/scitranslmed.3003205.
9
Lysyl oxidase like-2 contributes to renal fibrosis in Col4α3/Alport mice.
Kidney Int. 2018 Aug;94(2):303-314. doi: 10.1016/j.kint.2018.02.024. Epub 2018 May 16.
10
Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment.
PLoS One. 2015 Nov 10;10(11):e0141231. doi: 10.1371/journal.pone.0141231. eCollection 2015.

引用本文的文献

1
Unlocking the Diagnostic and Therapeutic Potential of microRNA in Diabetes: A Bibliometric and Visualized Analysis (2003-2023).
J Multidiscip Healthc. 2025 Aug 27;18:5227-5247. doi: 10.2147/JMDH.S533519. eCollection 2025.
2
AntimiR uptake by human proximal tubule epithelial cells is predominantly by macropinocytosis.
Sci Rep. 2025 Aug 29;15(1):31799. doi: 10.1038/s41598-025-16522-3.
3
4
Opening new frontiers with catalytic nucleic acids in miRNA inhibition.
Front Pharmacol. 2025 Jun 23;16:1604711. doi: 10.3389/fphar.2025.1604711. eCollection 2025.
5
Small Extracellular Vesicles Derived From Damaged Muscle Aggravate Kidney Injury Progression.
J Cachexia Sarcopenia Muscle. 2025 Jun;16(3):e13861. doi: 10.1002/jcsm.13861.
7
MicroRNAs and vascular damage in chronic kidney disease: advances and clinical implications.
J Bras Nefrol. 2025 Jul-Sep;47(3):e20240223. doi: 10.1590/2175-8239-JBN-2024-0223en.
8
MicroRNA nanoformulation: a promising approach to anti-tumour activity.
Invest New Drugs. 2025 May 14. doi: 10.1007/s10637-025-01534-7.
9
High-throughput 3D spheroid screens identify microRNA sensitizers for improved thermoradiotherapy in locally advanced cancers.
Mol Ther Nucleic Acids. 2025 Mar 5;36(2):102500. doi: 10.1016/j.omtn.2025.102500. eCollection 2025 Jun 10.
10
Roles of microRNAs in cardiorenal syndrome.
Mol Cell Biochem. 2025 Mar 25. doi: 10.1007/s11010-025-05253-8.

本文引用的文献

1
Molecular mechanisms of diabetic kidney disease.
J Clin Invest. 2014 Jun;124(6):2333-40. doi: 10.1172/JCI72271. Epub 2014 Jun 2.
2
Cellular and molecular mechanisms in kidney fibrosis.
J Clin Invest. 2014 Jun;124(6):2299-306. doi: 10.1172/JCI72267. Epub 2014 Jun 2.
3
A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers.
Kidney Int. 2014 Jun;85(6):1461-8. doi: 10.1038/ki.2013.493. Epub 2014 Feb 12.
4
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.
J Clin Invest. 2013 Nov;123(11):4888-99. doi: 10.1172/JCI66218. Epub 2013 Oct 25.
5
Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport.
Kidney Int. 2014 Mar;85(3):522-8. doi: 10.1038/ki.2013.399. Epub 2013 Oct 16.
7
Association of peroxisome proliferator-activated receptors/retinoic acid receptors with renal diseases.
J Recept Signal Transduct Res. 2013 Dec;33(6):349-52. doi: 10.3109/10799893.2013.838786. Epub 2013 Sep 19.
8
Molecular genetics of familial hematuric diseases.
Nephrol Dial Transplant. 2013 Dec;28(12):2946-60. doi: 10.1093/ndt/gft253. Epub 2013 Sep 17.
9
Molecular basis of organ fibrosis: potential therapeutic approaches.
Exp Biol Med (Maywood). 2013 May;238(5):461-81. doi: 10.1177/1535370213489441.
10
GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy.
Am J Nephrol. 2013;38(1):39-49. doi: 10.1159/000351989. Epub 2013 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验