Suppr超能文献

通过量子存储器增强量子传感灵敏度。

Enhancing quantum sensing sensitivity by a quantum memory.

机构信息

3rd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany.

Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, Garching 85747, Germany.

出版信息

Nat Commun. 2016 Aug 10;7:12279. doi: 10.1038/ncomms12279.

Abstract

In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single (13)C nuclear spins.

摘要

在量子传感中,精度通常受到相位可以累积的最大时间间隔的限制。存储器已被用于将此时间间隔延长到相干寿命之外,从而提高精度。在这里,我们证明通过使用量子存储器也可以实现更高的灵敏度。为此,我们使用了一种混合自旋系统中的纠缠,该系统包括一个与钻石中的单个氮空位中心相关联的传感和记忆量子位。通过使用存储器,即使在传感器的相干衰减之后,我们也能保留完整的量子态,从而实现与不同弱耦合核自旋量子位的相干相互作用。我们通过逐渐增加传感器和存储器的纠缠来对比单独使用传感量子位的情况下我们混合量子系统的性能。我们还进一步将这个量子传感器-存储器对应用于单个 (13)C 核自旋的高分辨率 NMR 光谱学中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/897e/4987521/cc5fc678dd7d/ncomms12279-f1.jpg

相似文献

1
Enhancing quantum sensing sensitivity by a quantum memory.
Nat Commun. 2016 Aug 10;7:12279. doi: 10.1038/ncomms12279.
2
Magnetic resonance detection of individual proton spins using quantum reporters.
Phys Rev Lett. 2014 Nov 7;113(19):197601. doi: 10.1103/PhysRevLett.113.197601. Epub 2014 Nov 3.
3
Biocompatible surface functionalization architecture for a diamond quantum sensor.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2114186119.
4
Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins.
Nat Commun. 2021 Jul 20;12(1):4421. doi: 10.1038/s41467-021-24494-x.
5
Environmentally Mediated Coherent Control of a Spin Qubit in Diamond.
Phys Rev Lett. 2017 Apr 21;118(16):167204. doi: 10.1103/PhysRevLett.118.167204. Epub 2017 Apr 19.
6
High-fidelity spin entanglement using optimal control.
Nat Commun. 2014 Feb 28;5:3371. doi: 10.1038/ncomms4371.
7
Coherent feedback control of a single qubit in diamond.
Nature. 2016 Apr 7;532(7597):77-80. doi: 10.1038/nature17404.
9
Coherent spin control of a nanocavity-enhanced qubit in diamond.
Nat Commun. 2015 Jan 28;6:6173. doi: 10.1038/ncomms7173.
10
A fault-tolerant addressable spin qubit in a natural silicon quantum dot.
Sci Adv. 2016 Aug 12;2(8):e1600694. doi: 10.1126/sciadv.1600694. eCollection 2016 Aug.

引用本文的文献

1
Single nuclear spin detection and control in a van der Waals material.
Nature. 2025 Jul 9. doi: 10.1038/s41586-025-09258-7.
2
Chemically Tuning Room Temperature Pulsed Optically Detected Magnetic Resonance.
J Am Chem Soc. 2025 Jul 2;147(26):22911-22918. doi: 10.1021/jacs.5c05505. Epub 2025 Jun 17.
3
Remote quantum networks based on quantum memories.
Nanophotonics. 2025 Jan 9;14(11):1975-1992. doi: 10.1515/nanoph-2024-0487. eCollection 2025 Jun.
4
Coherent spin dynamics between electron and nucleus within a single atom.
Nat Commun. 2024 Sep 11;15(1):7951. doi: 10.1038/s41467-024-52270-0.
5
Experimental demonstration of adversarial examples in learning topological phases.
Nat Commun. 2022 Aug 25;13(1):4993. doi: 10.1038/s41467-022-32611-7.
6
Optical-domain spectral super-resolution via a quantum-memory-based time-frequency processor.
Nat Commun. 2022 Feb 4;13(1):691. doi: 10.1038/s41467-022-28066-5.
7
Algorithmic decomposition for efficient multiple nuclear spin detection in diamond.
Sci Rep. 2020 Sep 10;10(1):14884. doi: 10.1038/s41598-020-71339-6.
8
Kilohertz electron paramagnetic resonance spectroscopy of single nitrogen centers at zero magnetic field.
Sci Adv. 2020 May 27;6(22):eaaz8244. doi: 10.1126/sciadv.aaz8244. eCollection 2020 May.
9
Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications.
Beilstein J Nanotechnol. 2019 Nov 4;10:2128-2151. doi: 10.3762/bjnano.10.207. eCollection 2019.
10
NV center based nano-NMR enhanced by deep learning.
Sci Rep. 2019 Nov 28;9(1):17802. doi: 10.1038/s41598-019-54119-9.

本文引用的文献

1
Quantum Metrology Enhanced by Repetitive Quantum Error Correction.
Phys Rev Lett. 2016 Jun 10;116(23):230502. doi: 10.1103/PhysRevLett.116.230502. Epub 2016 Jun 9.
4
Probing molecular dynamics at the nanoscale via an individual paramagnetic centre.
Nat Commun. 2015 Oct 12;6:8527. doi: 10.1038/ncomms9527.
5
High-fidelity spin entanglement using optimal control.
Nat Commun. 2014 Feb 28;5:3371. doi: 10.1038/ncomms4371.
6
Quantum error correction in a solid-state hybrid spin register.
Nature. 2014 Feb 13;506(7487):204-7. doi: 10.1038/nature12919.
8
Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions.
Phys Rev Lett. 2013 Feb 8;110(6):060502. doi: 10.1103/PhysRevLett.110.060502. Epub 2013 Feb 5.
9
Magnetic sensitivity beyond the projection noise limit by spin squeezing.
Phys Rev Lett. 2012 Dec 21;109(25):253605. doi: 10.1103/PhysRevLett.109.253605. Epub 2012 Dec 19.
10
Quantum metrology in non-Markovian environments.
Phys Rev Lett. 2012 Dec 7;109(23):233601. doi: 10.1103/PhysRevLett.109.233601. Epub 2012 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验