Department of Physics, Harvard University, Cambridge, MA 02138, USA.
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Science. 2016 Feb 19;351(6275):836-41. doi: 10.1126/science.aad8022. Epub 2016 Feb 4.
Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.
核磁共振波谱学是一种用于有机化合物和生物分子结构分析的强大工具,但通常需要大量的宏观样品。我们使用一种传感器,该传感器由两个量子位组成,分别对应于电子自旋和辅助核自旋,在室温下演示了对单个连接到金刚石表面的泛素蛋白内多个核物种的磁共振检测和光谱分析。我们使用量子逻辑来提高读出保真度,并使用表面处理技术来延长浅氮空位中心的自旋相干时间,从而证明了磁场灵敏度足以在 1 秒的积分时间内检测到单个质子自旋。这种灵敏度的提高使我们能够高置信度地检测单个蛋白质,并能够观察到揭示其化学成分信息的光谱特征。