Suppr超能文献

昼夜节律增强子在体内协调多个节律基因转录阶段。

Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

机构信息

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell. 2014 Nov 20;159(5):1140-1152. doi: 10.1016/j.cell.2014.10.022.

Abstract

Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

摘要

哺乳动物转录组显示出复杂的昼夜节律,其基因表达具有多个相位,这不能用当前的分子钟模型来解释。我们通过在小鼠肝脏中进行昼夜转录本的测量,确定了潜在的机制。对特定昼夜相位聚集的增强子 RNA (eRNA)进行无偏分析,鉴定了由不同转录因子 (TF) 驱动的功能增强子。我们进一步在全局范围内确定了 TF 顺式作用元件的组成部分,这些元件的功能是协调昼夜基因表达。综合基因组分析还揭示了单个昼夜节律因子控制相反转录相位的机制。这些发现揭示了在哺乳动物器官中产生多个昼夜基因转录相位时,TF 功能的多样性和特异性。

相似文献

1
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.
Cell. 2014 Nov 20;159(5):1140-1152. doi: 10.1016/j.cell.2014.10.022.
2
Dissecting the Rev-erbα Cistrome and the Mechanisms Controlling Circadian Transcription in Liver.
Cold Spring Harb Symp Quant Biol. 2015;80:233-8. doi: 10.1101/sqb.2015.80.027508. Epub 2015 Sep 14.
3
A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation.
Nucleic Acids Res. 2017 Jun 2;45(10):5720-5738. doi: 10.1093/nar/gkx156.
4
Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription.
Science. 2018 Mar 16;359(6381):1274-1277. doi: 10.1126/science.aao6891. Epub 2018 Feb 8.
5
Using GRO-Seq to Measure Circadian Transcription and Discover Circadian Enhancers.
Methods Mol Biol. 2021;2130:127-148. doi: 10.1007/978-1-0716-0381-9_10.
7
Help from my friends-cooperation of BMAL1 with noncircadian transcription factors.
Genes Dev. 2019 Mar 1;33(5-6):255-257. doi: 10.1101/gad.324046.119.
8
The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis.
Chronobiol Int. 2015;32(6):774-84. doi: 10.3109/07420528.2015.1046601. Epub 2015 Jun 30.
10
Transcriptional oscillation of canonical clock genes in mouse peripheral tissues.
BMC Mol Biol. 2004 Oct 9;5:18. doi: 10.1186/1471-2199-5-18.

引用本文的文献

2
Nurse night shift work and risk of gastrointestinal cancers.
Front Public Health. 2025 Apr 28;13:1532623. doi: 10.3389/fpubh.2025.1532623. eCollection 2025.
3
Human genetic variation determines 24-hour rhythmic gene expression and disease risk.
Nat Commun. 2025 May 8;16(1):4270. doi: 10.1038/s41467-025-59524-5.
4
The metabolic significance of peripheral tissue clocks.
Commun Biol. 2025 Mar 26;8(1):497. doi: 10.1038/s42003-025-07932-0.
5
Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals.
Biology (Basel). 2025 Jan 8;14(1):42. doi: 10.3390/biology14010042.
6
Epigenetic regulation of global proteostasis dynamics by RBBP5 ensures mammalian organismal health.
bioRxiv. 2024 Sep 13:2024.09.13.612812. doi: 10.1101/2024.09.13.612812.
7
An atlas of the human liver diurnal transcriptome and its perturbation by hepatitis C virus infection.
Nat Commun. 2024 Aug 29;15(1):7486. doi: 10.1038/s41467-024-51698-8.
8
Human genetic variation determines 24-hour rhythmic gene expression and disease risk.
Res Sq. 2024 Aug 5:rs.3.rs-4790200. doi: 10.21203/rs.3.rs-4790200/v1.

本文引用的文献

1
Pet-1 deficiency alters the circadian clock and its temporal organization of behavior.
PLoS One. 2014 May 15;9(5):e97412. doi: 10.1371/journal.pone.0097412. eCollection 2014.
3
Nuclear receptors rock around the clock.
EMBO Rep. 2014 May;15(5):518-28. doi: 10.1002/embr.201338271. Epub 2014 Apr 15.
4
Machine learning helps identify CHRONO as a circadian clock component.
PLoS Biol. 2014 Apr 15;12(4):e1001840. doi: 10.1371/journal.pbio.1001840. eCollection 2014 Apr.
5
Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals.
PLoS Genet. 2014 Mar 6;10(3):e1004155. doi: 10.1371/journal.pgen.1004155. eCollection 2014 Mar.
6
CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes.
Mol Cell Biol. 2014 May;34(10):1776-87. doi: 10.1128/MCB.01465-13. Epub 2014 Mar 3.
7
Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides.
Cell Metab. 2014 Feb 4;19(2):319-30. doi: 10.1016/j.cmet.2013.12.016.
8
Reprogramming of the circadian clock by nutritional challenge.
Cell. 2013 Dec 19;155(7):1464-78. doi: 10.1016/j.cell.2013.11.034.
9
Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription.
Nature. 2013 Jun 27;498(7455):511-5. doi: 10.1038/nature12209. Epub 2013 Jun 2.
10
Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation.
Nature. 2013 Jun 27;498(7455):516-20. doi: 10.1038/nature12210. Epub 2013 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验