Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
Methods Mol Biol. 2021;2130:127-148. doi: 10.1007/978-1-0716-0381-9_10.
Circadian gene transcription transmits timing information and drives cyclic physiological processes across various tissues. Recent studies indicate that oscillating enhancer activity is a major driving force of rhythmic gene transcription. Functional circadian enhancers can be identified in an unbiased manner by correlation with the rhythms of nearby gene transcription.Global run-on sequencing (GRO-seq) measures nascent transcription of both pre-mRNAs and enhancer RNAs (eRNAs) at a genome-wide level, making it a unique tool for unraveling complex gene regulation mechanisms in vivo. Here, we describe a comprehensive protocol, ranging from wet lab to in silico analysis, for detecting and quantifying circadian transcription of genes and eRNAs. Moreover, using gene-eRNA correlation, we detail the steps necessary to identify functional enhancers and transcription factors (TFs) that control circadian gene expression in vivo. While we use mouse liver as an example, this protocol is applicable for multiple tissues.
昼夜节律基因转录传递时间信息,并驱动各种组织中的周期性生理过程。最近的研究表明,波动的增强子活性是节律性基因转录的主要驱动力。通过与附近基因转录的节律相关联,可以以无偏倚的方式识别功能昼夜节律增强子。全基因组运行序列 (GRO-seq) 以全基因组水平测量前 mRNA 和增强子 RNA (eRNA) 的新生转录,使其成为体内解析复杂基因调控机制的独特工具。在这里,我们描述了一种全面的方案,从湿实验到计算机分析,用于检测和定量基因和 eRNA 的昼夜转录。此外,我们通过基因-eRNA 相关性,详细介绍了识别功能增强子和转录因子 (TF) 的必要步骤,这些增强子和转录因子控制体内昼夜基因表达。虽然我们以小鼠肝脏为例,但该方案适用于多种组织。