Gabba Matteo, Poblete Simón, Rosenkranz Tobias, Katranidis Alexandros, Kempe Daryan, Züchner Tina, Winkler Roland G, Gompper Gerhard, Fitter Jörg
Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany.
Institute of Complex Systems (ICS-2): Theoretical Soft Matter and Biophysics, Forschungszentrum Jülich, Jülich, Germany.
Biophys J. 2014 Oct 21;107(8):1913-1923. doi: 10.1016/j.bpj.2014.08.016.
Over the last few decades, a view has emerged showing that multidomain enzymes are biological machines evolved to harness stochastic kicks of solvent particles into highly directional functional motions. These intrinsic motions are structurally encoded, and Nature makes use of them to catalyze chemical reactions by means of ligand-induced conformational changes and states redistribution. Such mechanisms align reactive groups for efficient chemistry and stabilize conformers most proficient for catalysis. By combining single-molecule Förster resonance energy transfer measurements with normal mode analysis and coarse-grained mesoscopic simulations, we obtained results for a hinge-bending enzyme, namely phosphoglycerate kinase (PGK), which support and extend these ideas. From single-molecule Förster resonance energy transfer, we obtained insight into the distribution of conformational states and the dynamical properties of the domains. The simulations allowed for the characterization of interdomain motions of a compact state of PGK. The data show that PGK is intrinsically a highly dynamic system sampling a wealth of conformations on timescales ranging from nanoseconds to milliseconds and above. Functional motions encoded in the fold are performed by the PGK domains already in its ligand-free form, and substrate binding is not required to enable them. Compared to other multidomain proteins, these motions are rather fast and presumably not rate-limiting in the enzymatic reaction. Ligand binding slightly readjusts the orientation of the domains and feasibly locks the protein motions along a preferential direction. In addition, the functionally relevant compact state is stabilized by the substrates, and acts as a prestate to reach active conformations by means of Brownian motions.
在过去几十年里,一种观点逐渐形成,即多结构域酶是进化而来的生物机器,能够将溶剂粒子的随机碰撞转化为高度定向的功能运动。这些内在运动在结构上是编码的,自然界利用它们通过配体诱导的构象变化和状态重新分布来催化化学反应。这种机制使反应基团排列以实现高效化学反应,并稳定最有利于催化的构象。通过将单分子荧光共振能量转移测量与正常模式分析和粗粒度介观模拟相结合,我们获得了一种铰链弯曲酶即磷酸甘油酸激酶(PGK)的结果,这些结果支持并扩展了这些观点。从单分子荧光共振能量转移中,我们深入了解了构象状态的分布和结构域的动力学性质。模拟使得对PGK紧凑状态的结构域间运动进行了表征。数据表明,PGK本质上是一个高度动态的系统,在从纳秒到毫秒及以上的时间尺度上采样大量构象。折叠中编码的功能运动由处于无配体形式的PGK结构域执行,不需要底物结合来实现这些运动。与其他多结构域蛋白相比,这些运动相当快,并且可能在酶促反应中不是限速步骤。配体结合稍微重新调整了结构域的方向,并可能沿着优先方向锁定蛋白质运动。此外,功能相关的紧凑状态由底物稳定,并作为通过布朗运动达到活性构象的预状态。