Suppr超能文献

朝着正确方向前进:蛋白质振动引导功能

Moving in the Right Direction: Protein Vibrations Steering Function.

作者信息

Niessen Katherine A, Xu Mengyang, Paciaroni Alessandro, Orecchini Andrea, Snell Edward H, Markelz Andrea G

机构信息

Department of Physics, University at Buffalo, State University of New York, Buffalo, New York.

Department of Physics, University at Buffalo, State University of New York, Buffalo, New York.

出版信息

Biophys J. 2017 Mar 14;112(5):933-942. doi: 10.1016/j.bpj.2016.12.049.

Abstract

Nearly all protein functions require structural change, such as enzymes clamping onto substrates, and ion channels opening and closing. These motions are a target for possible new therapies; however, the control mechanisms are under debate. Calculations have indicated protein vibrations enable structural change. However, previous measurements found these vibrations only weakly depend on the functional state. By using the novel technique of anisotropic terahertz microscopy, we find that there is a dramatic change to the vibrational directionality with inhibitor binding to lysozyme, whereas the vibrational energy distribution, as measured by neutron inelastic scattering, is only slightly altered. The anisotropic terahertz measurements provide unique access to the directionality of the intramolecular vibrations, and immediately resolve the inconsistency between calculations and previous measurements, which were only sensitive to the energy distribution. The biological importance of the vibrational directions versus the energy distribution is revealed by our calculations comparing wild-type lysozyme with a higher catalytic rate double deletion mutant. The vibrational energy distribution is identical, but the more efficient mutant shows an obvious reorientation of motions. These results show that it is essential to characterize the directionality of motion to understand and control protein dynamics to optimize or inhibit function.

摘要

几乎所有蛋白质功能都需要结构变化,比如酶与底物结合、离子通道开启和关闭。这些运动是潜在新疗法的靶点;然而,其控制机制仍存在争议。计算表明蛋白质振动能够促成结构变化。然而,此前的测量发现这些振动仅微弱地依赖于功能状态。通过使用各向异性太赫兹显微镜新技术,我们发现随着抑制剂与溶菌酶结合,振动方向性发生了显著变化,而通过中子非弹性散射测量的振动能量分布仅略有改变。各向异性太赫兹测量提供了对分子内振动方向性的独特洞察,并立即解决了计算结果与之前仅对能量分布敏感的测量结果之间的不一致。通过将野生型溶菌酶与催化速率更高的双缺失突变体进行比较的计算,揭示了振动方向与能量分布的生物学重要性。振动能量分布相同,但效率更高的突变体显示出明显的运动重新定向。这些结果表明,为了理解和控制蛋白质动力学以优化或抑制其功能,表征运动方向性至关重要。

相似文献

8
Protein and RNA dynamical fingerprinting.蛋白质和 RNA 动力学指纹图谱分析。
Nat Commun. 2019 Mar 4;10(1):1026. doi: 10.1038/s41467-019-08926-3.

引用本文的文献

8
Stationary Sample Anisotropic THz Spectroscopy using Discretely Tunable THz Sources.使用离散可调太赫兹源的静态样本各向异性太赫兹光谱学
Int Conf Infrared Millim Terahertz Waves. 2019 Sep;2019. doi: 10.1109/irmmw-thz.2019.8874234. Epub 2019 Oct 21.
9
THz Anisotropy Identification using Tunable Compact Narrow Band THz Sources.使用可调谐紧凑型窄带太赫兹源进行太赫兹各向异性识别
Int Conf Infrared Millim Terahertz Waves. 2018 Sep;2018. doi: 10.1109/irmmw-thz.2018.8510291. Epub 2018 Oct 29.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验