Suppr超能文献

霍乱弧菌气液界面生物膜力学特性的分子决定因素

Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface.

作者信息

Hollenbeck Emily C, Fong Jiunn C N, Lim Ji Youn, Yildiz Fitnat H, Fuller Gerald G, Cegelski Lynette

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California.

Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California.

出版信息

Biophys J. 2014 Nov 18;107(10):2245-52. doi: 10.1016/j.bpj.2014.10.015.

Abstract

Biofilm formation increases both the survival and infectivity of Vibrio cholerae, the causative agent of cholera. V. cholerae is capable of forming biofilms on solid surfaces and at the air-liquid interface, termed pellicles. Known components of the extracellular matrix include the matrix proteins Bap1, RbmA, and RbmC, an exopolysaccharide termed Vibrio polysaccharide, and DNA. In this work, we examined a rugose strain of V. cholerae and its mutants unable to produce matrix proteins by interfacial rheology to compare the evolution of pellicle elasticity in real time to understand the molecular basis of matrix protein contributions to pellicle integrity and elasticity. Together with electron micrographs, visual inspection, and contact angle measurements of the pellicles, we defined distinct contributions of the matrix proteins to pellicle morphology, microscale architecture, and mechanical properties. Furthermore, we discovered that Bap1 is uniquely required for the maintenance of the mechanical strength of the pellicle over time and contributes to the hydrophobicity of the pellicle. Thus, Bap1 presents an important matrix component to target in the prevention and dispersal of V. cholerae biofilms.

摘要

生物膜的形成增加了霍乱弧菌(霍乱的病原体)的存活率和传染性。霍乱弧菌能够在固体表面和气液界面形成生物膜,即菌膜。细胞外基质的已知成分包括基质蛋白Bap1、RbmA和RbmC、一种称为霍乱弧菌多糖的胞外多糖以及DNA。在这项研究中,我们通过界面流变学研究了一株粗糙型霍乱弧菌及其无法产生基质蛋白的突变体,以实时比较菌膜弹性的演变,从而了解基质蛋白对菌膜完整性和弹性的贡献的分子基础。结合菌膜的电子显微照片、目视检查和接触角测量,我们确定了基质蛋白对菌膜形态、微观结构和机械性能的不同贡献。此外,我们发现Bap1是随着时间维持菌膜机械强度所独特需要的,并且有助于菌膜的疏水性。因此,Bap1是预防和分散霍乱弧菌生物膜时的一个重要靶向基质成分。

相似文献

1
Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface.
Biophys J. 2014 Nov 18;107(10):2245-52. doi: 10.1016/j.bpj.2014.10.015.
2
The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae.
J Bacteriol. 2007 Mar;189(6):2319-30. doi: 10.1128/JB.01569-06. Epub 2007 Jan 12.
3
The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae.
J Bacteriol. 2014 Dec;196(24):4245-52. doi: 10.1128/JB.01944-14. Epub 2014 Sep 29.
4
Outer membrane vesicles and the outer membrane protein OmpU govern biofilm matrix assembly.
mBio. 2024 Feb 14;15(2):e0330423. doi: 10.1128/mbio.03304-23. Epub 2024 Jan 11.
5
The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from provides insights into bacterial biofilm adhesion.
J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub 2019 Aug 22.
6
Structural dynamics of RbmA governs plasticity of biofilms.
Elife. 2017 Aug 1;6:e26163. doi: 10.7554/eLife.26163.
7
Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface.
Colloids Surf B Biointerfaces. 2020 Apr;188:110786. doi: 10.1016/j.colsurfb.2020.110786. Epub 2020 Jan 11.
9
Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA.
J Bacteriol. 2013 Jul;195(14):3277-86. doi: 10.1128/JB.00374-13. Epub 2013 May 17.
10
Effect of antimicrobial nanocomposites on Vibrio cholerae lifestyles: Pellicle biofilm, planktonic and surface-attached biofilm.
PLoS One. 2019 Jun 12;14(6):e0217869. doi: 10.1371/journal.pone.0217869. eCollection 2019.

引用本文的文献

1
Thermodynamics of Surfactant-Enriched Binary-Fluid Systems.
Langmuir. 2025 Feb 4;41(4):2141-2155. doi: 10.1021/acs.langmuir.4c01724. Epub 2025 Jan 21.
2
Vibrio cholerae RbmB is an α-1,4-polysaccharide lyase with biofilm-disrupting activity against Vibrio polysaccharide (VPS).
PLoS Pathog. 2024 Dec 2;20(12):e1012750. doi: 10.1371/journal.ppat.1012750. eCollection 2024 Dec.
3
Intra-strain colony biofilm heterogeneity in uropathogenic and the effect of the NlpI lipoprotein.
Biofilm. 2024 Jul 17;8:100214. doi: 10.1016/j.bioflm.2024.100214. eCollection 2024 Dec.
4
Microstructural and Rheological Transitions in Bacterial Biofilms.
Adv Sci (Weinh). 2023 Sep;10(27):e2207373. doi: 10.1002/advs.202207373. Epub 2023 Jul 31.
6
Systems view of Bacillus subtilis pellicle development.
NPJ Biofilms Microbiomes. 2022 Apr 12;8(1):25. doi: 10.1038/s41522-022-00293-0.
7
Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces.
Front Microbiol. 2021 Jul 8;12:686793. doi: 10.3389/fmicb.2021.686793. eCollection 2021.
8
Shear stress affects the architecture and cohesion of Chlorella vulgaris biofilms.
Sci Rep. 2021 Feb 17;11(1):4002. doi: 10.1038/s41598-021-83523-3.
9
Biophysical methods to quantify bacterial behaviors at oil-water interfaces.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):725-738. doi: 10.1007/s10295-020-02293-5. Epub 2020 Aug 2.
10
An Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation.
Appl Environ Microbiol. 2020 Sep 1;86(18). doi: 10.1128/AEM.01074-20.

本文引用的文献

1
rheology of bacterial biofilms.
Soft Matter. 2013 Jan 7;9(1):122-131. doi: 10.1039/C2SM27005F.
2
Environmental reservoirs and mechanisms of persistence of Vibrio cholerae.
Front Microbiol. 2013 Dec 16;4:375. doi: 10.3389/fmicb.2013.00375.
3
In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli.
PLoS One. 2013 Nov 11;8(11):e78524. doi: 10.1371/journal.pone.0078524. eCollection 2013.
4
Elasticity and wrinkled morphology of Bacillus subtilis pellicles.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2011-6. doi: 10.1073/pnas.1217178110. Epub 2013 Jan 22.
5
Liquid transport facilitated by channels in Bacillus subtilis biofilms.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):848-52. doi: 10.1073/pnas.1216376110. Epub 2012 Dec 27.
8
Molecular architecture and assembly principles of Vibrio cholerae biofilms.
Science. 2012 Jul 13;337(6091):236-9. doi: 10.1126/science.1222981.
9
Cholera.
Lancet. 2012 Jun 30;379(9835):2466-2476. doi: 10.1016/S0140-6736(12)60436-X.
10
BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
Mol Microbiol. 2012 Jul;85(1):51-66. doi: 10.1111/j.1365-2958.2012.08094.x. Epub 2012 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验