Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
Biocore, INRIA, Université Côte d'Azur, 06902, Sophia Antipolis Cedex, France.
Sci Rep. 2021 Feb 17;11(1):4002. doi: 10.1038/s41598-021-83523-3.
The architecture of microalgae biofilms has been poorly investigated, in particular with respect to shear stress, which is a crucial factor in biofilm-based reactor design and operation. To investigate how microalgae biofilms respond to different hydrodynamic regimes, the architecture and cohesion of Chlorella vulgaris biofilms were studied in flow-cells at three shear stress: 1.0, 6.5 and 11.0 mPa. Biofilm physical properties and architecture dynamics were monitored using a set of microscopic techniques such as, fluorescence recovery after photobleaching (FRAP) and particle tracking. At low shear, biofilms cohesion was heterogeneous resulting in a strong basal (close to the substrate) layer and in more loose superficial ones. Higher shear (11.0 mPa) significantly increased the cohesion of the biofilms allowing them to grow thicker and to produce more biomass, likely due to a biological response to resist the shear stress. Interestingly, an acclimation strategy seemed also to occur which allowed the biofilms to preserve their growth rate at the different hydrodynamic regimes. Our results are in accordance with those previously reported for bacteria biofilms, revealing some general physical/mechanical rules that govern microalgae life on substrates. These results may bring new insights about how to improve productivity and stability of microalgae biofilm-based systems.
微藻生物膜的结构一直研究甚少,特别是对于剪切应力,它是生物膜反应器设计和运行的关键因素。为了研究微藻生物膜如何响应不同的水动力条件,在三种剪切应力(1.0、6.5 和 11.0 mPa)下,在流动池中研究了普通小球藻生物膜的结构和内聚性。使用一系列微观技术,如荧光恢复后光漂白(FRAP)和颗粒跟踪,监测生物膜的物理特性和结构动力学。在低剪切条件下,生物膜的内聚性是不均匀的,导致靠近基底的底层较强,而较浅的表层较松散。较高的剪切(11.0 mPa)显著增加了生物膜的内聚性,使它们能够生长得更厚,产生更多的生物量,这可能是由于生物对剪切应力的抵抗而产生的生物反应。有趣的是,似乎也发生了一种适应策略,使生物膜能够在不同的水动力条件下保持其生长速率。我们的结果与先前报道的细菌生物膜的结果一致,揭示了一些控制微藻在基质上生长的一般物理/力学规律。这些结果可能为如何提高微藻生物膜系统的生产力和稳定性提供新的见解。