Suppr超能文献

胆固醇是如何被磷脂酰乙醇胺吸引到质膜的细胞质叶的。

How cholesterol could be drawn to the cytoplasmic leaf of the plasma membrane by phosphatidylethanolamine.

作者信息

Giang Ha, Schick M

机构信息

Department of Physics, University of Washington, Seattle, Washington.

Department of Physics, University of Washington, Seattle, Washington.

出版信息

Biophys J. 2014 Nov 18;107(10):2337-44. doi: 10.1016/j.bpj.2014.10.012.

Abstract

In the mammalian plasma membrane, cholesterol can translocate rapidly between the exoplasmic and cytoplasmic leaves, so that its distribution between them should be given by the equality of its chemical potential in the leaves. Due to its favorable interaction with sphingomyelin, which is almost entirely in the outer leaf, one expects the great majority of cholesterol to be there also. Experimental results do not support this, implying that there is some mechanism attracting cholesterol to the inner leaf. We hypothesize that it is drawn there to reduce the bending free energy of the membrane caused by the presence of PE (phosphatidylethanolamine). It does this in two ways: first by simply diluting the amount of PE in the inner leaf, and second by ordering the tails of the PE to reduce its spontaneous curvature. Incorporating this mechanism into a model free energy for the bilayer, we find that between 50 and 60% of the total cholesterol should be in the inner leaf of human erythrocytes.

摘要

在哺乳动物的质膜中,胆固醇能够在外质叶和细胞质叶之间快速转运,因此其在这两层之间的分布应由其在这两层中的化学势相等来决定。由于胆固醇与几乎完全位于外叶的鞘磷脂具有良好的相互作用,人们预期绝大多数胆固醇也会在外叶。然而实验结果并不支持这一点,这意味着存在某种机制将胆固醇吸引到内叶。我们推测,胆固醇被吸引到内叶是为了降低由磷脂酰乙醇胺(PE)的存在而导致的膜弯曲自由能。它通过两种方式实现这一点:一是简单地稀释内叶中PE的量,二是使PE的尾部有序排列以降低其自发曲率。将这一机制纳入双层膜的自由能模型中,我们发现,在人类红细胞中,总胆固醇的50%至60%应位于内叶。

相似文献

1
How cholesterol could be drawn to the cytoplasmic leaf of the plasma membrane by phosphatidylethanolamine.
Biophys J. 2014 Nov 18;107(10):2337-44. doi: 10.1016/j.bpj.2014.10.012.
2
Cholesterol-Dependent Bending Energy Is Important in Cholesterol Distribution of the Plasma Membrane.
Biophys J. 2019 Jun 18;116(12):2356-2366. doi: 10.1016/j.bpj.2019.03.028. Epub 2019 Apr 2.
3
On the puzzling distribution of cholesterol in the plasma membrane.
Chem Phys Lipids. 2016 Sep;199:35-38. doi: 10.1016/j.chemphyslip.2015.12.002. Epub 2015 Dec 24.
4
Model Plasma Membrane Exhibits a Microemulsion in Both Leaves Providing a Foundation for "Rafts".
Biophys J. 2020 Mar 10;118(5):1019-1031. doi: 10.1016/j.bpj.2020.01.004. Epub 2020 Jan 16.
5
Model of a raft in both leaves of an asymmetric lipid bilayer.
Biophys J. 2013 Sep 17;105(6):1406-13. doi: 10.1016/j.bpj.2013.06.053.
8
Strongly Correlated Rafts in Both Leaves of an Asymmetric Bilayer.
J Phys Chem B. 2018 Apr 5;122(13):3251-3258. doi: 10.1021/acs.jpcb.7b08890. Epub 2017 Nov 2.

引用本文的文献

2
Induced asymmetries in membranes.
Biophys J. 2023 Jun 6;122(11):2092-2098. doi: 10.1016/j.bpj.2022.12.004. Epub 2022 Dec 6.
3
Structural determinants of cholesterol recognition in helical integral membrane proteins.
Biophys J. 2021 May 4;120(9):1592-1604. doi: 10.1016/j.bpj.2021.02.028. Epub 2021 Feb 26.
4
Model Plasma Membrane Exhibits a Microemulsion in Both Leaves Providing a Foundation for "Rafts".
Biophys J. 2020 Mar 10;118(5):1019-1031. doi: 10.1016/j.bpj.2020.01.004. Epub 2020 Jan 16.
5
Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles.
Biophys J. 2019 Nov 5;117(9):1589-1598. doi: 10.1016/j.bpj.2019.09.020. Epub 2019 Sep 20.
6
Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane.
Theor Biol Med Model. 2019 Aug 15;16(1):13. doi: 10.1186/s12976-019-0108-2.
7
Cholesterol-Dependent Bending Energy Is Important in Cholesterol Distribution of the Plasma Membrane.
Biophys J. 2019 Jun 18;116(12):2356-2366. doi: 10.1016/j.bpj.2019.03.028. Epub 2019 Apr 2.
9
Erythrocyte Aging, Protection via Vesiculation: An Analysis Methodology via Oscillatory Flow.
Front Physiol. 2018 Nov 16;9:1607. doi: 10.3389/fphys.2018.01607. eCollection 2018.

本文引用的文献

1
Monolayer spontaneous curvature of raft-forming membrane lipids.
Soft Matter. 2013 Dec 7;9(45):10877-10884. doi: 10.1039/C3SM51829A.
2
Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.
PLoS One. 2014 Jan 28;9(1):e87903. doi: 10.1371/journal.pone.0087903. eCollection 2014.
3
Atomistic simulations of a multicomponent asymmetric lipid bilayer.
J Phys Chem B. 2012 Nov 15;116(45):13403-10. doi: 10.1021/jp3032868. Epub 2012 Nov 1.
4
Lipid sorting by ceramide and the consequences for membrane proteins.
Biophys J. 2012 May 2;102(9):2031-8. doi: 10.1016/j.bpj.2012.03.059.
5
Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations.
J Am Chem Soc. 2011 May 4;133(17):6563-77. doi: 10.1021/ja106626r. Epub 2011 Apr 7.
6
Dynamic transbilayer lipid asymmetry.
Cold Spring Harb Perspect Biol. 2011 May 1;3(5):a004671. doi: 10.1101/cshperspect.a004671.
7
Cholesterol, the central lipid of mammalian cells.
Curr Opin Cell Biol. 2010 Aug;22(4):422-9. doi: 10.1016/j.ceb.2010.05.004. Epub 2010 Jun 2.
8
Deuterium NMR study of the effect of ergosterol on POPE membranes.
Biophys J. 2010 Apr 7;98(7):1209-17. doi: 10.1016/j.bpj.2009.12.4279.
9
Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells.
Mol Biol Cell. 2009 Jan;20(2):581-8. doi: 10.1091/mbc.e08-07-0785. Epub 2008 Nov 19.
10
Thermodynamics of lipid interactions in complex bilayers.
Biochim Biophys Acta. 2009 Jan;1788(1):72-85. doi: 10.1016/j.bbamem.2008.08.007. Epub 2008 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验