Hobert Elissa M, Doerner Amy E, Walker Allison S, Schepartz Alanna
Isr J Chem. 2013 Aug;53(8):567-576. doi: 10.1002/ijch.201300063.
The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.
细胞内部是一个复杂且要求严苛的环境。种类繁多的分子相互竞争,以确定正确的位置——那些促进生物学过程的特定相互作用隐藏在无数无成效的选项之中。确保细胞的活动取得成功需要精密的机制来施加时间和空间特异性,这不仅适用于瞬时相互作用,也适用于它们最终的结果。在细胞环境中用于调节大分子相互作用的两种策略是共定位和区室化。大分子相互作用可以通过将相互作用的分子定位在同一亚细胞区室中,或者通过与蛋白质、脂质或DNA的共价或非共价相互作用使它们靠近来促进和明确,这是任何生物学家都熟悉的主题。这些策略的最终结果是有效摩尔浓度的增加:反应性分子在其反应伙伴附近的局部浓度。我们将关注这种大自然采用并在实验室中得以应用的普遍机制,它能在复杂环境中实现精细控制:通过接近作用来加速、引导或以其他方式影响信号蛋白的反应性及其编码的信息的能力。