Suppr超能文献

有效摩尔浓度:化学和生物学中作为指导力量的邻近性

Effective molarity : Proximity as a guiding force in chemistry and biology.

作者信息

Hobert Elissa M, Doerner Amy E, Walker Allison S, Schepartz Alanna

出版信息

Isr J Chem. 2013 Aug;53(8):567-576. doi: 10.1002/ijch.201300063.

Abstract

The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.

摘要

细胞内部是一个复杂且要求严苛的环境。种类繁多的分子相互竞争,以确定正确的位置——那些促进生物学过程的特定相互作用隐藏在无数无成效的选项之中。确保细胞的活动取得成功需要精密的机制来施加时间和空间特异性,这不仅适用于瞬时相互作用,也适用于它们最终的结果。在细胞环境中用于调节大分子相互作用的两种策略是共定位和区室化。大分子相互作用可以通过将相互作用的分子定位在同一亚细胞区室中,或者通过与蛋白质、脂质或DNA的共价或非共价相互作用使它们靠近来促进和明确,这是任何生物学家都熟悉的主题。这些策略的最终结果是有效摩尔浓度的增加:反应性分子在其反应伙伴附近的局部浓度。我们将关注这种大自然采用并在实验室中得以应用的普遍机制,它能在复杂环境中实现精细控制:通过接近作用来加速、引导或以其他方式影响信号蛋白的反应性及其编码的信息的能力。

相似文献

1
Effective molarity : Proximity as a guiding force in chemistry and biology.
Isr J Chem. 2013 Aug;53(8):567-576. doi: 10.1002/ijch.201300063.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement.
Chemistry. 2020 Aug 6;26(44):9826-9834. doi: 10.1002/chem.202001660. Epub 2020 Jun 29.
4
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
5
Amplifying Intermolecular Events by Streptavidin-Induced Proximity.
J Am Chem Soc. 2022 Jun 29;144(25):11377-11385. doi: 10.1021/jacs.2c03666. Epub 2022 Jun 17.
7
Polymer Chemistry in Living Cells.
Acc Chem Res. 2022 Oct 18;55(20):2998-3009. doi: 10.1021/acs.accounts.2c00420. Epub 2022 Sep 30.
8
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
Acc Chem Res. 2017 Oct 17;50(10):2496-2509. doi: 10.1021/acs.accounts.7b00280. Epub 2017 Sep 15.
9
DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.
Angew Chem Int Ed Engl. 2004 Sep 20;43(37):4848-70. doi: 10.1002/anie.200400656.

引用本文的文献

1
The optimal docking strength for reversibly tethered kinases.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2203098119. doi: 10.1073/pnas.2203098119. Epub 2022 Jun 13.
2
Using antibodies to control DNA-templated chemical reactions.
Nat Commun. 2020 Dec 7;11(1):6242. doi: 10.1038/s41467-020-20024-3.
3
Mechanistic investigation of aziridine aldehyde-driven peptide macrocyclization: the imidoanhydride pathway.
Chem Sci. 2015 Oct 1;6(10):5446-5455. doi: 10.1039/c5sc01958c. Epub 2015 Jul 7.
4
Dual-Input Regulation and Positional Control in Hybrid Oligonucleotide/Discotic Supramolecular Wires.
Angew Chem Int Ed Engl. 2018 Apr 23;57(18):4976-4980. doi: 10.1002/anie.201800148. Epub 2018 Mar 23.
5
Effective molarity in a nucleic acid-controlled reaction.
Bioorg Med Chem Lett. 2016 Jun 1;26(11):2627-30. doi: 10.1016/j.bmcl.2016.04.022. Epub 2016 Apr 9.

本文引用的文献

2
Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
ACS Synth Biol. 2013 Jan 18;2(1):14-21. doi: 10.1021/sb300047u. Epub 2012 Jul 10.
3
A comprehensive mathematical model for three-body binding equilibria.
J Am Chem Soc. 2013 Apr 24;135(16):6092-9. doi: 10.1021/ja311795d. Epub 2013 Apr 16.
5
Nano-scale alignment of proteins on a flexible DNA backbone.
PLoS One. 2012;7(12):e52534. doi: 10.1371/journal.pone.0052534. Epub 2012 Dec 26.
6
Promoting strand exchange in a DNA-templated transfer reaction.
Chem Commun (Camb). 2013 Jan 21;49(6):618-20. doi: 10.1039/c2cc36162k. Epub 2012 Dec 5.
7
Diffusive transport phenomena in artificial enzyme cascades on scaffolds.
Nat Nanotechnol. 2012 Dec;7(12):769-70. doi: 10.1038/nnano.2012.222.
8
Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system.
Appl Environ Microbiol. 2013 Feb;79(3):774-82. doi: 10.1128/AEM.02578-12. Epub 2012 Nov 16.
9
10
Engineering robust control of two-component system phosphotransfer using modular scaffolds.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18090-5. doi: 10.1073/pnas.1209230109. Epub 2012 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验