Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark.
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2203098119. doi: 10.1073/pnas.2203098119. Epub 2022 Jun 13.
Many kinases use reversible docking interactions to augment the specificity of their catalytic domains. Such docking interactions are often structurally independent of the catalytic domain, which allow for a flexible combination of modules in evolution and in bioengineering. The affinity of docking interactions spans several orders of magnitude. This led us to ask how the affinity of the docking interaction affects enzymatic activity and how to pick the optimal interaction module to complement a given substrate. Here, we develop equations that predict the optimal binding strength of a kinase docking interaction and validate it using numerical simulations and steady-state phosphorylation kinetics for tethered protein kinase A. We show that a kinase-substrate pair has an optimum docking strength that depends on their enzymatic constants, the tether architecture, the substrate concentration, and the kinetics of the docking interactions. We show that a reversible tether enhances phosphorylation rates most when 1) the docking strength is intermediate, 2) the substrate is nonoptimal, 3) the substrate concentration is low, 4) the docking interaction has rapid exchange kinetics, and 5) the tether optimizes the effective concentration of the intramolecular reaction. This work serves as a framework for interpreting mutations in kinase docking interactions and as a design guide for engineering enzyme scaffolds.
许多激酶利用可逆对接相互作用来提高其催化结构域的特异性。这种对接相互作用通常在结构上与催化结构域无关,这使得模块在进化和生物工程中具有灵活的组合方式。对接相互作用的亲和力跨越了几个数量级。这使我们不禁要问,对接相互作用的亲和力如何影响酶活性,以及如何选择最佳的相互作用模块来补充给定的底物。在这里,我们开发了预测激酶对接相互作用最佳结合强度的方程,并使用数值模拟和固定化蛋白激酶 A 的稳态磷酸化动力学对其进行了验证。我们表明,激酶-底物对具有最佳的对接强度,这取决于它们的酶常数、连接体结构、底物浓度以及对接相互作用的动力学。我们表明,当 1)对接强度处于中间水平,2)底物非最优,3)底物浓度低,4)对接相互作用具有快速交换动力学,以及 5)连接体优化了分子内反应的有效浓度时,可逆连接体能最有效地提高磷酸化速率。这项工作为解释激酶对接相互作用中的突变提供了框架,并为工程酶支架的设计提供了指导。