Suppr超能文献

超容量工作记忆任务执行过程中脑网络激活的动态变化。

Dynamic shifts in brain network activation during supracapacity working memory task performance.

作者信息

Van Snellenberg Jared X, Slifstein Mark, Read Christina, Weber Jochen, Thompson Judy L, Wager Tor D, Shohamy Daphna, Abi-Dargham Anissa, Smith Edward E

机构信息

Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Translational Imaging, New York State Psychiatric Institute, New York, New York.

出版信息

Hum Brain Mapp. 2015 Apr;36(4):1245-64. doi: 10.1002/hbm.22699. Epub 2014 Nov 24.

Abstract

Despite significant advances in understanding how brain networks support working memory (WM) and cognitive control, relatively little is known about how these networks respond when cognitive capabilities are overtaxed. We used a fine-grained manipulation of memory load within a single trial to exceed WM capacity during functional magnetic resonance imaging to investigate how these networks respond to support task performance when WM capacity is exceeded. Analyzing correct trials only, we observed a nonmonotonic (inverted-U) response to WM load throughout the classic WM network (including bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and presupplementary motor areas) that peaked later in individuals with greater WM capacity. We also observed a relative increase in activity in medial anterior prefrontal cortex, posterior cingulate/precuneus, and lateral temporal and parietal regions at the highest WM loads, and a set of predominantly subcortical and prefrontal regions whose activation was greatest at the lowest WM loads. At the individual subject level, the inverted-U pattern was associated with poorer performance while expression of the early and late activating patterns was predictive of better performance. In addition, greater activation in bilateral fusiform gyrus and right occipital lobe at the highest WM loads predicted better performance. These results demonstrate dynamic and behaviorally relevant changes in the level of activation of multiple brain networks in response to increasing WM load that are not well accounted for by present models of how the brain subserves the cognitive ability to hold and manipulate information on-line.

摘要

尽管在理解大脑网络如何支持工作记忆(WM)和认知控制方面取得了重大进展,但对于这些网络在认知能力负担过重时的反应却知之甚少。我们在单次试验中对记忆负荷进行了精细操纵,使其在功能磁共振成像期间超过WM容量,以研究当WM容量被超过时这些网络如何做出反应以支持任务表现。仅分析正确试验,我们在整个经典WM网络(包括双侧背外侧前额叶皮层、顶叶后皮质和辅助运动前区)中观察到对WM负荷的非单调(倒U形)反应,在WM容量较大的个体中峰值出现得更晚。我们还观察到,在最高WM负荷下,内侧前额叶前皮质、后扣带回/楔前叶以及颞叶和顶叶外侧区域的活动相对增加,以及一组主要位于皮层下和前额叶的区域,其激活在最低WM负荷时最大。在个体水平上,倒U形模式与较差的表现相关,而早期和晚期激活模式的表达则预示着较好的表现。此外,在最高WM负荷下双侧梭状回和右侧枕叶的更大激活预示着更好的表现。这些结果表明,随着WM负荷增加,多个脑网络激活水平发生了动态且与行为相关的变化,而目前关于大脑如何支持在线持有和操纵信息的认知能力的模型并不能很好地解释这些变化。

相似文献

1
Dynamic shifts in brain network activation during supracapacity working memory task performance.
Hum Brain Mapp. 2015 Apr;36(4):1245-64. doi: 10.1002/hbm.22699. Epub 2014 Nov 24.
2
Mechanisms of Working Memory Impairment in Schizophrenia.
Biol Psychiatry. 2016 Oct 15;80(8):617-26. doi: 10.1016/j.biopsych.2016.02.017. Epub 2016 Feb 23.
3
Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73. doi: 10.1016/j.pnpbp.2009.07.032. Epub 2009 Aug 8.
4
Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia.
Neuropsychologia. 2010 Jan;48(1):309-18. doi: 10.1016/j.neuropsychologia.2009.09.020.
5
Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study.
Neuroscience. 2008 Apr 22;153(1):54-62. doi: 10.1016/j.neuroscience.2008.01.063. Epub 2008 Feb 15.
6
An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task.
Brain Res Cogn Brain Res. 2005 May;23(2-3):207-20. doi: 10.1016/j.cogbrainres.2004.10.010. Epub 2004 Dec 9.
7
Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia.
Schizophr Res. 2013 Nov;150(2-3):468-75. doi: 10.1016/j.schres.2013.08.009. Epub 2013 Sep 7.
8
Temporal dynamics of basal ganglia response and connectivity during verbal working memory.
Neuroimage. 2007 Feb 1;34(3):1253-69. doi: 10.1016/j.neuroimage.2006.08.056. Epub 2006 Dec 18.
9
The neurodevelopmental differences of increasing verbal working memory demand in children and adults.
Dev Cogn Neurosci. 2016 Feb;17:19-27. doi: 10.1016/j.dcn.2015.10.008. Epub 2015 Nov 5.
10

引用本文的文献

1
Enhanced role of the entorhinal cortex in adapting to increased working memory load.
Nat Commun. 2025 Jul 1;16(1):5798. doi: 10.1038/s41467-025-60681-w.
2
The latent structure of working memory: A large sample factor model of working memory capacity.
Cogn Affect Behav Neurosci. 2025 Jun 2. doi: 10.3758/s13415-025-01310-3.
3
Translational Evidence for Dopaminergic Rewiring of the Basal Ganglia in Persons with Schizophrenia.
medRxiv. 2025 Apr 1:2025.03.31.25324962. doi: 10.1101/2025.03.31.25324962.
7
Molecular mechanisms underlying the neural correlates of working memory.
BMC Biol. 2024 Oct 21;22(1):238. doi: 10.1186/s12915-024-02039-0.

本文引用的文献

1
Capacity estimates in working memory: Reliability and interrelationships among tasks.
Cogn Affect Behav Neurosci. 2014 Mar;14(1):106-16. doi: 10.3758/s13415-013-0235-x.
2
Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET.
J Cogn Neurosci. 1997 Jul;9(4):462-75. doi: 10.1162/jocn.1997.9.4.462.
3
Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance.
Magn Reson Imaging. 2010 Oct;28(8):1051-7. doi: 10.1016/j.mri.2010.03.021. Epub 2010 Apr 21.
4
When less is more: TPJ and default network deactivation during encoding predicts working memory performance.
Neuroimage. 2010 Feb 1;49(3):2638-48. doi: 10.1016/j.neuroimage.2009.11.008. Epub 2009 Nov 12.
5
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
6
Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling.
Neuroimage. 2009 Mar;45(1 Suppl):S187-98. doi: 10.1016/j.neuroimage.2008.10.065. Epub 2008 Nov 21.
7
Medial temporal lobe activity predicts successful relational memory binding.
J Neurosci. 2008 Jan 2;28(1):116-24. doi: 10.1523/JNEUROSCI.3086-07.2008.
8
The mind and brain of short-term memory.
Annu Rev Psychol. 2008;59:193-224. doi: 10.1146/annurev.psych.59.103006.093615.
9
Determining the number of clusters using the weighted gap statistic.
Biometrics. 2007 Dec;63(4):1031-7. doi: 10.1111/j.1541-0420.2007.00784.x. Epub 2007 Apr 9.
10
From cognitive to neural models of working memory.
Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):761-72. doi: 10.1098/rstb.2007.2086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验