Chemical Biology and Therapeutics, St. Jude Children's Research Hospital Memphis, TN, USA ; Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center Memphis, TN, USA.
Chemical Biology and Therapeutics, St. Jude Children's Research Hospital Memphis, TN, USA.
Front Neurosci. 2014 Nov 10;8:364. doi: 10.3389/fnins.2014.00364. eCollection 2014.
The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio) as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFP) (sj2), that expresses enhanced green fluorescent protein (EGFP) in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFP) (sj2), we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.
脉络丛是一种位于脑室内的以上皮细胞为基础的结构,是血脑屏障的主要组成部分。脉络丛产生脑脊液并调节脑脊液的成分。脉络丛功能异常与神经退行性疾病、脉络丛上皮肿瘤形成和脑积水有关。在这项研究中,我们使用斑马鱼(Danio rerio)作为模型系统来了解脉络丛发育的遗传成分。我们生成了一个增强子陷阱线 Et(cp:EGFP) (sj2),该线在脉络丛上皮中表达增强型绿色荧光蛋白 (EGFP)。通过免疫组织化学和荧光示踪剂,我们证明了斑马鱼脉络丛具有紧密连接和转运体活性等脑屏障特性。因此,我们建立了斑马鱼作为研究脉络丛发育的功能相关模型。我们采用无偏方法对脉络丛进行正向遗传分析,以鉴定其形成和功能所必需的基因。使用 Et(cp:EGFP) (sj2),我们分离出 10 条具有脉络丛异常的隐性突变系,这些突变系根据 GFP 强度、上皮定位和总体脉络丛形态分为五类。我们还将两个突变系的突变分别定位到染色体 4 和 21 上。本研究中生成的突变体可用于阐明脉络丛发育、功能和/或维持所必需的特定基因和信号通路,并将为这些遗传突变如何导致疾病提供重要的见解。