Suppr超能文献

效应子在丝状植物病原体非寄主抗性中的作用。

The role of effectors in nonhost resistance to filamentous plant pathogens.

机构信息

Division of Plant Sciences, University of Dundee - The James Hutton Institute Dundee, UK.

Cell and Molecular Sciences, The James Hutton Institute Dundee, UK.

出版信息

Front Plant Sci. 2014 Nov 5;5:582. doi: 10.3389/fpls.2014.00582. eCollection 2014.

Abstract

In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.

摘要

在自然界中,大多数植物对广泛的植物病原体具有抗性。然而,导致这种所谓的非寄主抗性(NHR)的机制还知之甚少。除了组成性防御外,植物还发展了两层诱导防御系统。植物先天免疫依赖于对保守的病原体相关分子模式(PAMPs)的识别。在相容相互作用中,病原体入侵时分泌的致病性效应子分子可以抑制宿主防御反应并促进感染过程。此外,植物还基于对这些效应子的识别进化出了病原体特异性的抗性机制,这会引起次级防御反应。当前的效应子驱动假说认为,与寄主植物亲缘关系较远的植物中的 NHR 是由不能被病原体有效抑制的 PAMP 识别触发的,而在亲缘关系更近的物种中,非寄主识别效应子则会发挥关键作用。在这篇综述中,我们概述了目前关于效应子分子在寄主和 NHR 中的作用的知识,并将这些发现置于模型背景下进行讨论。我们重点介绍了丝状病原体(真菌和卵菌)的例子,讨论了它们对植物-病原体相互作用领域的意义,以及在作物中持久抗性的发展方面对植物育种策略的相关性。

相似文献

1
The role of effectors in nonhost resistance to filamentous plant pathogens.
Front Plant Sci. 2014 Nov 5;5:582. doi: 10.3389/fpls.2014.00582. eCollection 2014.
2
Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2114064119. doi: 10.1073/pnas.2114064119. Epub 2022 Aug 22.
3
Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops.
Plant Sci. 2019 Feb;279:108-116. doi: 10.1016/j.plantsci.2018.07.002. Epub 2018 Jul 24.
4
Nonhost resistance against bacterial pathogens: retrospectives and prospects.
Annu Rev Phytopathol. 2013;51:407-27. doi: 10.1146/annurev-phyto-082712-102319.
5
Genetic approaches to dissect plant nonhost resistance mechanisms.
Mol Plant Pathol. 2023 Mar;24(3):272-283. doi: 10.1111/mpp.13290. Epub 2023 Jan 8.
6
Receptor-mediated nonhost resistance in plants.
Essays Biochem. 2022 Sep 30;66(5):435-445. doi: 10.1042/EBC20210080.
7
What is the Molecular Basis of Nonhost Resistance?
Mol Plant Microbe Interact. 2020 Nov;33(11):1253-1264. doi: 10.1094/MPMI-06-20-0161-CR. Epub 2020 Oct 2.
8
Current Understandings of Plant Nonhost Resistance.
Mol Plant Microbe Interact. 2017 Jan;30(1):5-15. doi: 10.1094/MPMI-10-16-0213-CR. Epub 2017 Jan 12.
10
Silencing and innate immunity in plant defense against viral and non-viral pathogens.
Viruses. 2012 Oct 29;4(11):2578-97. doi: 10.3390/v4112578.

引用本文的文献

1
Plant microRNAs regulate the defense response against pathogens.
Front Microbiol. 2024 Aug 30;15:1434798. doi: 10.3389/fmicb.2024.1434798. eCollection 2024.
3
The devastating oomycete phytopathogen Phytophthora cactorum: Insights into its biology and molecular features.
Mol Plant Pathol. 2023 Sep;24(9):1017-1032. doi: 10.1111/mpp.13345. Epub 2023 May 5.
4
Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2114064119. doi: 10.1073/pnas.2114064119. Epub 2022 Aug 22.
5
Hierarchical regulation of Burkholderia glumae type III secretion system by GluR response regulator and Lon protease.
Mol Plant Pathol. 2022 Oct;23(10):1461-1471. doi: 10.1111/mpp.13241. Epub 2022 Jun 19.
6
Comparative Analysis of Host-Associated Variation in .
Front Microbiol. 2021 Jul 2;12:679936. doi: 10.3389/fmicb.2021.679936. eCollection 2021.
7
Resistance Correlations Influence Infection by Foreign Pathogens.
Am Nat. 2021 Aug;198(2):206-218. doi: 10.1086/715013. Epub 2021 Jun 17.
8
A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis.
Nat Microbiol. 2021 Jun;6(6):722-730. doi: 10.1038/s41564-021-00896-x. Epub 2021 May 3.
9
The Lifecycle of the Plant Immune System.
CRC Crit Rev Plant Sci. 2020;39(1):72-100. doi: 10.1080/07352689.2020.1757829. Epub 2020 May 18.

本文引用的文献

1
Susceptibility genes 101: how to be a good host.
Annu Rev Phytopathol. 2014;52:551-81. doi: 10.1146/annurev-phyto-102313-045854. Epub 2014 Jun 23.
3
Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.
PLoS Pathog. 2014 Apr 24;10(4):e1004057. doi: 10.1371/journal.ppat.1004057. eCollection 2014 Apr.
5
Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors.
Mol Plant Microbe Interact. 2014 Jul;27(7):624-37. doi: 10.1094/MPMI-02-14-0040-R.
6
Genomic variability as a driver of plant-pathogen coevolution?
Curr Opin Plant Biol. 2014 Apr;18:24-30. doi: 10.1016/j.pbi.2013.12.003. Epub 2014 Feb 1.
7
Effector specialization in a lineage of the Irish potato famine pathogen.
Science. 2014 Jan 31;343(6170):552-5. doi: 10.1126/science.1246300.
8
LysM effectors: secreted proteins supporting fungal life.
PLoS Pathog. 2013;9(12):e1003769. doi: 10.1371/journal.ppat.1003769. Epub 2013 Dec 12.
9
Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes.
Mol Ecol. 2014 Feb;23(4):753-73. doi: 10.1111/mec.12631. Epub 2014 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验