Suppr超能文献

一种细胞表面暴露的蛋白质复合物,在 Ustilago maydis 中具有必需的毒力功能。

A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis.

机构信息

Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.

出版信息

Nat Microbiol. 2021 Jun;6(6):722-730. doi: 10.1038/s41564-021-00896-x. Epub 2021 May 3.

Abstract

Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.

摘要

定殖于活体植物组织中的植物病原真菌会分泌出效应蛋白“鸡尾酒”,以抑制植物免疫并重新编程宿主细胞。尽管这些效应蛋白中的许多在宿主细胞内发挥作用,但尚未在真菌中检测到病原菌用来将效应蛋白转运到宿主细胞的输送系统。在这里,我们表明,来自玉米黑粉菌(一种引起玉米黑粉病的活体营养真菌)的五个不相关的效应蛋白和两种膜蛋白形成了一个稳定的蛋白复合物。这七个基因似乎都受到共同调控,仅在定殖时表达。单个突变体在表皮层中停止生长,无法抑制宿主防御反应,也无法诱导非宿主抗性,这两种反应可能依赖于转运的效应蛋白。该复合物锚定在真菌膜上,突出到宿主细胞中,可能与形成通道的植物质膜蛋白接触。所有七个复合物成员的组成型表达导致培养的玉米黑粉菌细胞表面暴露的形式。由于该复合物形成蛋白的同源物在黑粉菌中保守,因此该复合物可能成为一个有趣的杀菌剂靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3354/8159752/cbd97de3c29d/41564_2021_896_Fig1_HTML.jpg

相似文献

引用本文的文献

3
Fungal impacts on Earth's ecosystems.真菌对地球生态系统的影响。
Nature. 2025 Feb;638(8049):49-57. doi: 10.1038/s41586-024-08419-4. Epub 2025 Feb 5.
6
A cell-free system for functional studies of small membrane proteins.用于小膜蛋白功能研究的无细胞系统。
J Biol Chem. 2024 Nov;300(11):107850. doi: 10.1016/j.jbc.2024.107850. Epub 2024 Oct 1.
7
Fungal effectors: past, present, and future.真菌效应物:过去、现在和未来。
Curr Opin Microbiol. 2024 Oct;81:102526. doi: 10.1016/j.mib.2024.102526. Epub 2024 Aug 23.

本文引用的文献

1
Plant nonhost resistance: paradigms and new environments.植物非寄主抗性:范例与新环境。
Curr Opin Plant Biol. 2019 Aug;50:104-113. doi: 10.1016/j.pbi.2019.03.011. Epub 2019 May 7.
10
The Biotrophic Development of Studied by RNA-Seq Analysis.利用 RNA-Seq 分析研究生物营养发育。
Plant Cell. 2018 Feb;30(2):300-323. doi: 10.1105/tpc.17.00764. Epub 2018 Jan 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验