Zinman Guy E, Naiman Shoshana, O'Dee Dawn M, Kumar Nishant, Nau Gerard J, Cohen Haim Y, Bar-Joseph Ziv
Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
Nucleic Acids Res. 2015 Feb 18;43(3):e20. doi: 10.1093/nar/gku1224. Epub 2014 Nov 26.
Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.
识别基因网络中保守和不同的反应模式变得越来越重要。一种常见的方法是将表达信息与基因关联网络整合起来,以便找到被激活或抑制的相连基因群。在许多情况下,研究人员也对跨物种(或条件)的比较感兴趣。找到一个活跃的子网络是一个难题,将其应用于跨物种研究需要进一步考虑(例如直系同源信息、来自不同来源的表达数据和网络)。为了应对这些挑战,我们设计了ModuleBlast,它利用表达和网络拓扑结构来搜索高度相关的子网络。我们已将ModuleBlast应用于小鼠、猕猴和人类的表达及相互作用数据,以研究免疫反应和衰老。免疫反应分析确定了几个相关模块,与近期关于感染后细胞凋亡和NFκB激活的研究结果一致。对这些数据的时间分析揭示了在物种内部和物种之间动态激活的模块级联。我们通过实验验证了一些由ModuleBlast结果分析得出的新假设,从而对一种关键的哺乳动物衰老蛋白所使用的机制有了新的认识。