Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Bruxelles, Belgium.
Bioinformatics. 2010 May 1;26(9):1211-8. doi: 10.1093/bioinformatics/btq105. Epub 2010 Mar 12.
Subgraph extraction is a powerful technique to predict pathways from biological networks and a set of query items (e.g. genes, proteins, compounds, etc.). It can be applied to a variety of different data types, such as gene expression, protein levels, operons or phylogenetic profiles. In this article, we investigate different approaches to extract relevant pathways from metabolic networks. Although these approaches have been adapted to metabolic networks, they are generic enough to be adjusted to other biological networks as well.
We comparatively evaluated seven sub-network extraction approaches on 71 known metabolic pathways from Saccharomyces cerevisiae and a metabolic network obtained from MetaCyc. The best performing approach is a novel hybrid strategy, which combines a random walk-based reduction of the graph with a shortest paths-based algorithm, and which recovers the reference pathways with an accuracy of approximately 77%.
Most of the presented algorithms are available as part of the network analysis tool set (NeAT). The kWalks method is released under the GPL3 license.
子图提取是一种从生物网络和一组查询项(例如基因、蛋白质、化合物等)预测途径的强大技术。它可以应用于各种不同的数据类型,如基因表达、蛋白质水平、操纵子或系统发育轮廓。在本文中,我们研究了从代谢网络中提取相关途径的不同方法。尽管这些方法已经被改编为代谢网络,但它们足够通用,可以适应其他生物网络。
我们在酿酒酵母的 71 个已知代谢途径和来自 MetaCyc 的代谢网络上比较评估了七种子网络提取方法。表现最好的方法是一种新颖的混合策略,它将基于随机游走的图简化与基于最短路径的算法相结合,并用大约 77%的准确率恢复参考途径。
所提出的算法大多可作为网络分析工具集(NeAT)的一部分使用。kWalks 方法根据 GPL3 许可证发布。