Suppr超能文献

通过掺入金属螯合非天然氨基酸2-氨基-3-(8-羟基喹啉-3-基)丙酸(HQA)实现膜蛋白的顺磁弛豫增强。

Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA).

作者信息

Park Sang Ho, Wang Vivian S, Radoicic Jasmina, De Angelis Anna A, Berkamp Sabrina, Opella Stanley J

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0307, USA.

出版信息

J Biomol NMR. 2015 Apr;61(3-4):185-96. doi: 10.1007/s10858-014-9884-5. Epub 2014 Nov 28.

Abstract

The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.

摘要

由于顺磁约束在蛋白质核磁共振中用于远程距离测量(>10 Å)具有诸多优势,因此它是一个活跃的研究领域。成功实施的主要问题之一是将顺磁金属离子引入抗磁性蛋白质中。最常见的金属离子标签是连接到选定半胱氨酸残基侧链上的相对较长的脂肪族链,末端带有螯合基团,在此处它会发生大量内部运动,从而降低了该方法的准确性。一种有吸引力的替代方法是利用分子生物学方法,将能在蛋白质特定位点结合金属离子的非天然氨基酸引入其中。在此,我们描述了通过在大肠杆菌中进行异源表达,成功地将非天然氨基酸2-氨基-3-(8-羟基喹啉-3-基)丙酸(HQA)引入两种不同的膜蛋白中。荧光和核磁共振实验表明,HQA完全取代了天然氨基酸,并且突变后的蛋白质能稳定地螯合金属。在胶束溶液中通过核磁共振得到的位点特异性分子内和分子间PREs证据,为在磷脂双层膜蛋白的固态核磁共振结构测定中使用HQA掺入奠定了基础。

相似文献

2
Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe.
J Am Chem Soc. 2009 Feb 25;131(7):2481-3. doi: 10.1021/ja808340b.
4
6
Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR.
Biophys J. 2017 Dec 19;113(12):2695-2705. doi: 10.1016/j.bpj.2017.09.041.
7
Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.
J Biomol NMR. 2018 Feb;70(2):77-92. doi: 10.1007/s10858-017-0160-3. Epub 2017 Dec 9.
9
Probing protein electrostatics with a synthetic fluorescent amino acid.
Science. 2002 May 31;296(5573):1700-3. doi: 10.1126/science.1069346.
10
Accelerating structural life science by paramagnetic lanthanide probe methods.
Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129332. doi: 10.1016/j.bbagen.2019.03.018. Epub 2019 Mar 28.

引用本文的文献

2
A Chemical Biology Primer for NMR Spectroscopists.
J Magn Reson Open. 2022 Jun;10-11. doi: 10.1016/j.jmro.2022.100044. Epub 2022 Feb 18.
3
Paramagnetic Chemical Probes for Studying Biological Macromolecules.
Chem Rev. 2022 May 25;122(10):9571-9642. doi: 10.1021/acs.chemrev.1c00708. Epub 2022 Jan 27.
4
NMR Methods for Structural Characterization of Protein-Protein Complexes.
Front Mol Biosci. 2020 Jan 28;7:9. doi: 10.3389/fmolb.2020.00009. eCollection 2020.
5
A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe.
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):13093-13100. doi: 10.1002/anie.201906049. Epub 2019 Aug 13.
7
Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR.
Biophys J. 2017 Dec 19;113(12):2695-2705. doi: 10.1016/j.bpj.2017.09.041.
8
A molecular engineering toolbox for the structural biologist.
Q Rev Biophys. 2017 Jan;50:e7. doi: 10.1017/S0033583517000051.
9
10
Lanthanoid tagging via an unnatural amino acid for protein structure characterization.
J Biomol NMR. 2017 Apr;67(4):273-282. doi: 10.1007/s10858-017-0106-9. Epub 2017 Apr 1.

本文引用的文献

1
NMR structures of membrane proteins in phospholipid bilayers.
Q Rev Biophys. 2014 Aug;47(3):249-83. doi: 10.1017/S0033583514000080. Epub 2014 Jul 17.
2
A two-armed lanthanoid-chelating paramagnetic NMR probe linked to proteins via thioether linkages.
Chemistry. 2014 May 19;20(21):6256-8. doi: 10.1002/chem.201400257. Epub 2014 Apr 15.
3
Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Curr Opin Struct Biol. 2014 Feb;24:45-53. doi: 10.1016/j.sbi.2013.11.010. Epub 2013 Dec 21.
4
Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe.
Biochemistry. 2014 Mar 11;53(9):1403-9. doi: 10.1021/bi4015715. Epub 2014 Feb 26.
5
A genetically encoded spin label for electron paramagnetic resonance distance measurements.
J Am Chem Soc. 2014 Jan 29;136(4):1238-41. doi: 10.1021/ja411535q. Epub 2014 Jan 15.
6
High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
J Biomol NMR. 2014 Jan;58(1):37-47. doi: 10.1007/s10858-013-9802-2. Epub 2013 Dec 13.
7
Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd³⁺-complexes for solid-state NMR spectroscopy.
J Biomol NMR. 2014 Jan;58(1):27-35. doi: 10.1007/s10858-013-9800-4. Epub 2013 Dec 4.
8
Seeing the invisible by paramagnetic and diamagnetic NMR.
Biochem Soc Trans. 2013 Dec;41(6):1343-54. doi: 10.1042/BST20130232.
9
Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Nat Methods. 2013 Oct;10(10):1007-12. doi: 10.1038/nmeth.2635. Epub 2013 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验