George G N, Turner N A, Bray R C, Morpeth F F, Boxer D H, Cramer S P
School of Chemistry and Molecular Sciences, University of Sussex, Brighton, U.K.
Biochem J. 1989 May 1;259(3):693-700. doi: 10.1042/bj2590693.
Previous e.p.r. work [George, Bray, Morpeth & Boxer (1985) Biochem. J. 227, 925-931] has provided evidence for a pH- and anion-dependent transition in the structure of the Mo(V) centre of Escherichia coli nitrate reductase, with the low-pH form bearing both an anion and probably a hydroxy-group ligand. Initial e.x.a.f.s. measurements [Cramer, Solomonson, Adams & Mortenson (1984) J. Am. Chem. Soc. 106, 1467-1471] demonstrated the presence of sulphur (or chloride) ligands in the Mo(IV) and Mo(VI) oxidation states, as well as a variable number of terminal oxo (Mo = O) groups. To synthesize the e.p.r. and e.x.a.f.s. results better, we have conducted new e.p.r. experiments and complementary e.x.a.f.s. measurements under redox and buffer conditions designed to give homogeneous molybdenum species. In contrast with results on other molybdoenzymes, attempts to substitute the enzyme with 17O by dissolving in isotopically enriched water revealed only very weak hyperfine coupling to 17O. The significance of this finding is discussed. Experiments with different buffers indicated that buffer ions (e.g. Hepes) could replace the Cl- ligand in the low-pH Mo(V) enzyme form, with only a small change in e.p.r. parameters. E.x.a.f.s. studies of the oxidized and the fully reduced enzyme were consistent with the e.p.r. work in indicating a pH- and anion-dependent change in structure. However, in certain cases non-stoichiometric numbers of Mo = O interactions were determined, complicating the interpretation of the e.x.a.f.s. Uniquely for a molybdenum cofactor enzyme, a substantial proportion of the molecules in a number of enzyme samples appeared to contain no oxo groups. No evidence was found in our samples for the distant 'heavy' ligand atom reported in the previous e.x.a.f.s. study. The nature of the high-pH-low-pH transition is briefly discussed.
先前的电子顺磁共振(EPR)研究工作[乔治、布雷、莫珀斯和博克瑟(1985年),《生物化学杂志》227卷,925 - 931页]已为大肠杆菌硝酸还原酶钼(V)中心结构中依赖于pH值和阴离子的转变提供了证据,低pH形式同时带有一个阴离子以及可能的一个羟基配体。最初的扩展X射线吸收精细结构(EXAFS)测量[克莱默、索洛蒙森、亚当斯和莫滕森(1984年),《美国化学会志》106卷,1467 - 1471页]表明,在钼(IV)和钼(VI)氧化态中存在硫(或氯)配体,以及数量可变的端基氧(Mo = O)基团。为了更好地综合EPR和EXAFS的结果,我们在旨在产生均一钼物种的氧化还原和缓冲条件下进行了新的EPR实验以及补充的EXAFS测量。与其他钼酶的结果不同,通过溶解在同位素富集水中用17O替代该酶的尝试仅显示出与17O非常弱的超精细偶合。讨论了这一发现的意义。用不同缓冲剂进行的实验表明,缓冲离子(如4 - (2 - 羟乙基)哌嗪 - 1 - 乙磺酸(HEPES))可以取代低pH钼(V)酶形式中的Cl - 配体,而EPR参数仅有微小变化。对氧化态和完全还原态酶的EXAFS研究与EPR工作一致,表明结构存在依赖于pH值和阴离子的变化。然而,在某些情况下,确定了非化学计量数的Mo = O相互作用,这使得对EXAFS的解释变得复杂。对于一种含钼辅因子的酶而言独特的是,许多酶样品中相当大比例的分子似乎不含有氧基团。在我们的样品中未发现先前EXAFS研究中报道的远距离“重”配体原子的证据。简要讨论了高pH - 低pH转变的性质。