Suppr超能文献

整合基因组数据有助于选择性地发现乳腺癌驱动因素。

Integration of genomic data enables selective discovery of breast cancer drivers.

作者信息

Sanchez-Garcia Félix, Villagrasa Patricia, Matsui Junji, Kotliar Dylan, Castro Verónica, Akavia Uri-David, Chen Bo-Juen, Saucedo-Cuevas Laura, Rodriguez Barrueco Ruth, Llobet-Navas David, Silva Jose M, Pe'er Dana

机构信息

Department of Biological Sciences and Department of Systems Biology, Columbia University, New York, NY 10027, USA; Department of Computer Science, Columbia University, New York, NY 10027, USA.

Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY 10029, USA.

出版信息

Cell. 2014 Dec 4;159(6):1461-75. doi: 10.1016/j.cell.2014.10.048. Epub 2014 Nov 26.

Abstract

Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, an algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p < 10(-14)). Nine of ten top-scoring Helios genes are known drivers of breast cancer, and in vitro validation of 12 candidates predicted by Helios found ten conferred enhanced anchorage-independent growth, demonstrating Helios's exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying driver genes and how it can yield important insights into cancer.

摘要

识别癌症中的驱动基因仍然是治疗发展和对该疾病基本认识的关键瓶颈。我们开发了Helios算法,该算法将原发性肿瘤的基因组数据与功能性RNA干扰筛选数据相结合,以在DNA的大型反复扩增区域内精确找出驱动基因。将Helios应用于乳腺癌数据,确定了一组高度富集已知驱动基因的候选驱动基因(p < 10(-14))。Helios评分最高的十个基因中有九个是已知的乳腺癌驱动基因,对Helios预测的12个候选基因进行的体外验证发现,其中十个基因赋予了增强的非锚定依赖性生长能力,证明了Helios具有极高的灵敏度和特异性。我们对RSF-1进行了广泛的表征,RSF-1是Helios识别出的一个驱动基因,其扩增与预后不良相关,并在小鼠模型中发现其肿瘤发生和转移增加。我们展示了一种识别驱动基因的强大方法,以及它如何能为癌症带来重要见解。

相似文献

1
Integration of genomic data enables selective discovery of breast cancer drivers.
Cell. 2014 Dec 4;159(6):1461-75. doi: 10.1016/j.cell.2014.10.048. Epub 2014 Nov 26.
2
Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
Breast Cancer Res Treat. 2015 Jul;152(2):347-56. doi: 10.1007/s10549-015-3476-2. Epub 2015 Jun 25.
5
Inferring causal genomic alterations in breast cancer using gene expression data.
BMC Syst Biol. 2011 Aug 1;5:121. doi: 10.1186/1752-0509-5-121.
6
Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.
Cell. 2016 Jan 14;164(1-2):293-309. doi: 10.1016/j.cell.2015.11.062.
7
ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.
Genomics. 2017 Jul;109(3-4):233-240. doi: 10.1016/j.ygeno.2017.04.004. Epub 2017 Apr 21.

引用本文的文献

1
Bioinformatics tools and resources for cancer and application.
Chin Med J (Engl). 2024 Sep 5;137(17):2052-2064. doi: 10.1097/CM9.0000000000003254. Epub 2024 Jul 30.
2
Functional exploration of copy number alterations in a Drosophila model of triple-negative breast cancer.
Dis Model Mech. 2024 Jul 1;17(7). doi: 10.1242/dmm.050191. Epub 2024 Jul 3.
3
Functional screening of amplification outlier oncogenes in organoid models of early tumorigenesis.
Cell Rep. 2023 Nov 28;42(11):113355. doi: 10.1016/j.celrep.2023.113355. Epub 2023 Nov 1.
4
A computational framework for the inference of protein complex remodeling from whole-proteome measurements.
Nat Methods. 2023 Oct;20(10):1523-1529. doi: 10.1038/s41592-023-02011-w. Epub 2023 Sep 25.
5
Breast tumor microenvironment structures are associated with genomic features and clinical outcome.
Nat Genet. 2022 May;54(5):660-669. doi: 10.1038/s41588-022-01041-y. Epub 2022 Apr 18.
7
Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs.
Antioxidants (Basel). 2021 Jun 25;10(7):1030. doi: 10.3390/antiox10071030.
10
Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants.
Commun Biol. 2020 Oct 16;3(1):578. doi: 10.1038/s42003-020-01301-9.

本文引用的文献

1
Mutational landscape and significance across 12 major cancer types.
Nature. 2013 Oct 17;502(7471):333-339. doi: 10.1038/nature12634.
2
Pan-cancer patterns of somatic copy number alteration.
Nat Genet. 2013 Oct;45(10):1134-40. doi: 10.1038/ng.2760.
3
RHPN2 drives mesenchymal transformation in malignant glioma by triggering RhoA activation.
Cancer Res. 2013 Aug 15;73(16):5140-50. doi: 10.1158/0008-5472.CAN-13-1168-T. Epub 2013 Jun 17.
4
Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix.
Cancer Res. 2013 Jun 15;73(12):3704-15. doi: 10.1158/0008-5472.CAN-12-2482.
5
A role for PVRL4-driven cell-cell interactions in tumorigenesis.
Elife. 2013 Apr 30;2:e00358. doi: 10.7554/eLife.00358.
6
Cancer genome landscapes.
Science. 2013 Mar 29;339(6127):1546-58. doi: 10.1126/science.1235122.
7
Rsf-1, a chromatin remodelling protein, interacts with cyclin E1 and promotes tumour development.
J Pathol. 2013 Mar;229(4):559-68. doi: 10.1002/path.4147. Epub 2013 Feb 4.
9
Comparative analysis of methods for identifying recurrent copy number alterations in cancer.
PLoS One. 2012;7(12):e52516. doi: 10.1371/journal.pone.0052516. Epub 2012 Dec 20.
10
Update on activities at the Universal Protein Resource (UniProt) in 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7. doi: 10.1093/nar/gks1068. Epub 2012 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验