Suppr超能文献

具有不可忽略的非单调缺失响应的纵向数据的推断。

Inference for longitudinal data with nonignorable nonmonotone missing responses.

作者信息

Sinha Sanjoy K, Kaushal Amit, Xiao Wenzhong

机构信息

School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Stanford Genome Technology Center, Stanford, CA 94305, USA.

出版信息

Comput Stat Data Anal. 2014 Apr;72:77-91. doi: 10.1016/j.csda.2013.10.027.

Abstract

For the analysis of longitudinal data with nonignorable and nonmonotone missing responses, a full likelihood method often requires intensive computation, especially when there are many follow-up times. The authors propose and explore a Monte Carlo method, based on importance sampling, for approximating the maximum likelihood estimators. The finite-sample properties of the proposed estimators are studied using simulations. An application of the proposed method is also provided using longitudinal data on peptide intensities obtained from a proteomics experiment of trauma patients.

摘要

对于具有不可忽略且非单调缺失响应的纵向数据进行分析时,全似然方法通常需要大量计算,尤其是当有许多随访时间点时。作者提出并探索了一种基于重要性抽样的蒙特卡罗方法,用于近似最大似然估计量。通过模拟研究了所提出估计量的有限样本性质。还使用从创伤患者蛋白质组学实验获得的肽强度纵向数据给出了该方法的一个应用实例。

相似文献

1
Inference for longitudinal data with nonignorable nonmonotone missing responses.
Comput Stat Data Anal. 2014 Apr;72:77-91. doi: 10.1016/j.csda.2013.10.027.
2
A bivariate pseudolikelihood for incomplete longitudinal binary data with nonignorable nonmonotone missingness.
Biometrics. 2011 Sep;67(3):1119-26. doi: 10.1111/j.1541-0420.2010.01525.x. Epub 2010 Dec 14.
3
Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference.
Stat Sin. 2018 Oct;28(4):2069-2088. doi: 10.5705/ss.202016.0325.
4
A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
Paediatr Perinat Epidemiol. 2017 Sep;31(5):468-478. doi: 10.1111/ppe.12382. Epub 2017 Aug 2.
5
Maximum likelihood methods for nonignorable missing responses and covariates in random effects models.
Biometrics. 2003 Dec;59(4):1140-50. doi: 10.1111/j.0006-341x.2003.00131.x.
6
Estimators based on Unconventional Likelihoods with Nonignorable Missing Data and its Application to a Children's Mental Health Study.
J Nonparametr Stat. 2019;31(4):911-931. doi: 10.1080/10485252.2019.1664739. Epub 2019 Sep 18.
7
Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies.
Biom J. 2022 Oct;64(7):1325-1339. doi: 10.1002/bimj.202100233. Epub 2022 Jun 20.
8
A self-censoring model for multivariate nonignorable nonmonotone missing data.
Biometrics. 2023 Dec;79(4):3203-3214. doi: 10.1111/biom.13916. Epub 2023 Jul 24.
9
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.
10
On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
J Am Stat Assoc. 2018;113(521):369-379. doi: 10.1080/01621459.2016.1256814. Epub 2017 Dec 1.

引用本文的文献

本文引用的文献

1
A bivariate pseudolikelihood for incomplete longitudinal binary data with nonignorable nonmonotone missingness.
Biometrics. 2011 Sep;67(3):1119-26. doi: 10.1111/j.1541-0420.2010.01525.x. Epub 2010 Dec 14.
2
Multivariate logistic regression with incomplete covariate and auxiliary information.
J Multivar Anal. 2010 Nov 1;101(10):2389-2397. doi: 10.1016/j.jmva.2010.06.010.
4
Sensitivity analysis for nonrandom dropout: a local influence approach.
Biometrics. 2001 Mar;57(1):7-14. doi: 10.1111/j.0006-341x.2001.00007.x.
5
Non-ignorable missing covariates in generalized linear models.
Stat Med. 1999;18(17-18):2435-48. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2435::aid-sim267>3.0.co;2-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验