Patrone Paul N, Wang Lili, Lin-Gibson Sheng, Kearsley Anthony J
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
Phys Rev E. 2025 Feb;111(2-1):024412. doi: 10.1103/PhysRevE.111.024412.
Harmonizing serology measurements (i.e., rendering them interchangeable) is critical for comparing results across different diagnostics platforms, developing associated reference materials, and thereby informing medical decisions. However, the theoretical foundations of such tasks have yet to be fully explored in terms of antibody thermodynamics and uncertainty quantification (UQ). In the context of SARS-CoV-2, for example, this has restricted the usefulness of standards currently deployed, limited the scope of materials considered as viable standards, and ultimately decreased confidence in serology. To address these problems, we develop rigorous theories of antibody normalization and harmonization. We begin by proposing a mathematical definition of harmonization equipped with structure needed to quantify uncertainty associated with the choice of standard, assay, etc. We then show how a thermodynamic description of serology measurements (i) relates this structure to the Gibbs free energy of antibody binding, and thereby (ii) induces a regression analysis that directly harmonizes measurements. We supplement this with an optimization-based normalization (not harmonization!) method that validates consistency between the behavior of a reference material and biological samples. A key result of these analyses is that under physically reasonable conditions, the choice of reference material does not increase uncertainty associated with harmonization. We validate main ideas via an interlab study that considers monoclonal antibodies as a reference for SARS-CoV-2 serology measurements and discuss connections to correlates of protection.
使血清学测量结果相互协调一致(即使其具有互换性)对于比较不同诊断平台的结果、开发相关参考物质以及据此做出医疗决策至关重要。然而,在抗体热力学和不确定性量化(UQ)方面,此类任务的理论基础尚未得到充分探索。例如,在新冠病毒(SARS-CoV-2)的背景下,这限制了当前所采用标准的实用性,缩小了被视为可行标准的物质范围,并最终降低了对血清学的信心。为了解决这些问题,我们开发了严格的抗体标准化和协调一致理论。我们首先提出了一种协调一致的数学定义,该定义具备量化与标准选择、检测方法等相关不确定性所需的结构。然后我们展示了血清学测量的热力学描述如何(i)将这种结构与抗体结合的吉布斯自由能联系起来,进而(ii)引发一种直接使测量结果相互协调一致的回归分析。我们用一种基于优化的标准化(而非协调一致!)方法对其进行补充,该方法可验证参考物质与生物样本行为之间的一致性。这些分析的一个关键结果是,在物理上合理的条件下,参考物质的选择不会增加与协调一致相关的不确定性。我们通过一项跨实验室研究验证了主要观点,该研究将单克隆抗体作为新冠病毒血清学测量的参考,并讨论了与保护相关性的联系。