Department of Sport's and Exercise Physiology, University of Vienna , Austria.
Department of Cardiology, Hansa Hospital Graz , Austria.
J Sports Sci Med. 2014 Dec 1;13(4):774-81. eCollection 2014 Dec.
The goal of this study is to evaluate the response of physiological variables to acute normobaric hypoxia compared to normoxia and its influence on the lactate turn point determination according to the three-phase model of energy supply (Phase I: metabolically balanced at muscular level; Phase II: metabolically balanced at systemic level; Phase III: not metabolically balanced) during maximal incremental exercise. Ten physically active (VO2max 3.9 [0.49] l·min(-1)), healthy men (mean age [SD]: 25.3 [4.6] yrs.), participated in the study. All participants performed two maximal cycle ergometric exercise tests under normoxic as well as hypoxic conditions (FiO2 = 14%). Blood lactate concentration, heart rate, gas exchange data, and power output at maximum and the first and the second lactate turn point (LTP1, LTP2), the heart rate turn point (HRTP) and the first and the second ventilatory turn point (VETP1, VETP2) were determined. Since in normobaric hypoxia absolute power output (P) was reduced at all reference points (max: 314 / 274 W; LTP2: 218 / 184 W; LTP1: 110 / 96 W), as well as VO2max (max: 3.90 / 3.23 l·min(-1); LTP2: 2.90 / 2.43 l·min(-1); LTP1: 1.66 / 1.52 l·min(-1)), percentages of Pmax at LTP1, LTP2, HRTP and VETP1, VETP2 were almost identical for hypoxic as well as normoxic conditions. Heart rate was significantly reduced at Pmax in hypoxia (max: 190 / 185 bpm), but no significant differences were found at submaximal control points. Blood lactate concentration was not different at maximum, and all reference points in both conditions. Respiratory exchange ratio (RER) (max: 1.28 / 1.08; LTP2: 1.13 / 0.98) and ventilatory equivalents for O2 (max: 43.4 / 34.0; LTP2: 32.1 / 25.4) and CO2 (max: 34.1 / 31.6; LTP2: 29.1 / 26.1) were significantly higher at some reference points in hypoxia. Significant correlations were found between LTP1 and VETP1 (r = 0.778; p < 0.01), LTP2 and HRTP (r = 0.828; p < 0.01) and VETP2 (r = 0.948; p < 0.01) for power output for both conditions. We conclude that the lactate turn point determination according to the three-phase-model of energy supply is valid in normobaric, normoxic as well as hypoxic conditions. The turn points for La, HR, and VE were reproducible among both conditions, but shifted left to lower workloads. The lactate turn point determination may therefore be used for the prescription of exercise performance in both environments. Key PointsThe lactate turn point concept can be used for performance testing in normoxic and hypoxic conditionsThe better the performance of the athletes the higher is the effect of hypoxiaThe HRTP and LTP2 are strongly correlated that allows a simple performance testing using heart rate measures only.
本研究的目的是评估在最大增量运动期间,与常氧相比,急性常压低氧对生理变量的反应及其对根据能量供应三阶段模型(阶段 I:肌肉水平代谢平衡;阶段 II:全身水平代谢平衡;阶段 III:代谢不平衡)确定乳酸转折点的影响。 10 名身体健康(最大摄氧量 3.9 [0.49] l·min(-1))、健康男性(平均年龄 [标准差]:25.3 [4.6] 岁)参加了这项研究。所有参与者在常氧和低氧条件下(FiO2 = 14%)进行了两次最大循环测力计测试。测定血乳酸浓度、心率、气体交换数据和最大功率输出以及第一和第二乳酸转折点(LTP1、LTP2)、心率转折点(HRTP)和第一和第二通气转折点(VETP1、VETP2)。由于在常压低氧条件下,所有参考点的绝对功率输出(P)均降低(最大:314 / 274 W;LTP2:218 / 184 W;LTP1:110 / 96 W),以及最大摄氧量(最大:3.90 / 3.23 l·min(-1);LTP2:2.90 / 2.43 l·min(-1);LTP1:1.66 / 1.52 l·min(-1)),低氧和常氧条件下的 LTP1、LTP2、HRTP 和 VETP1、VETP2 的 Pmax 百分比几乎相同。低氧时最大心率(max:190 / 185 bpm)明显降低,但在亚最大控制点未发现差异。最大和两种条件下的所有参考点的血乳酸浓度均无差异。呼吸交换率(RER)(最大:1.28 / 1.08;LTP2:1.13 / 0.98)和氧气(最大:43.4 / 34.0;LTP2:32.1 / 25.4)和二氧化碳(最大:34.1 / 31.6;LTP2:29.1 / 26.1)的通气当量在低氧的一些参考点显著升高。在两种条件下,LTP1 与 VETP1(r = 0.778;p < 0.01)、LTP2 与 HRTP(r = 0.828;p < 0.01)和 VETP2(r = 0.948;p < 0.01)之间存在显著相关性。对于两种条件下的功率输出,我们得出结论,根据能量供应的三阶段模型确定乳酸转折点是有效的。La、HR 和 VE 的转折点在两种条件下都是可重复的,但向左移至较低的工作量。因此,乳酸转折点的确定可用于两种环境下的运动表现的处方。关键点乳酸转折点概念可用于常氧和低氧条件下的性能测试运动员的表现越好,缺氧的影响就越大HRTP 和 LTP2 相关性很强,仅使用心率测量即可进行简单的性能测试。