Suppr超能文献

急性常压低氧对训练男子生理变量和乳酸拐点的影响。

Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men.

机构信息

Department of Sport's and Exercise Physiology, University of Vienna , Austria.

Department of Cardiology, Hansa Hospital Graz , Austria.

出版信息

J Sports Sci Med. 2014 Dec 1;13(4):774-81. eCollection 2014 Dec.

Abstract

The goal of this study is to evaluate the response of physiological variables to acute normobaric hypoxia compared to normoxia and its influence on the lactate turn point determination according to the three-phase model of energy supply (Phase I: metabolically balanced at muscular level; Phase II: metabolically balanced at systemic level; Phase III: not metabolically balanced) during maximal incremental exercise. Ten physically active (VO2max 3.9 [0.49] l·min(-1)), healthy men (mean age [SD]: 25.3 [4.6] yrs.), participated in the study. All participants performed two maximal cycle ergometric exercise tests under normoxic as well as hypoxic conditions (FiO2 = 14%). Blood lactate concentration, heart rate, gas exchange data, and power output at maximum and the first and the second lactate turn point (LTP1, LTP2), the heart rate turn point (HRTP) and the first and the second ventilatory turn point (VETP1, VETP2) were determined. Since in normobaric hypoxia absolute power output (P) was reduced at all reference points (max: 314 / 274 W; LTP2: 218 / 184 W; LTP1: 110 / 96 W), as well as VO2max (max: 3.90 / 3.23 l·min(-1); LTP2: 2.90 / 2.43 l·min(-1); LTP1: 1.66 / 1.52 l·min(-1)), percentages of Pmax at LTP1, LTP2, HRTP and VETP1, VETP2 were almost identical for hypoxic as well as normoxic conditions. Heart rate was significantly reduced at Pmax in hypoxia (max: 190 / 185 bpm), but no significant differences were found at submaximal control points. Blood lactate concentration was not different at maximum, and all reference points in both conditions. Respiratory exchange ratio (RER) (max: 1.28 / 1.08; LTP2: 1.13 / 0.98) and ventilatory equivalents for O2 (max: 43.4 / 34.0; LTP2: 32.1 / 25.4) and CO2 (max: 34.1 / 31.6; LTP2: 29.1 / 26.1) were significantly higher at some reference points in hypoxia. Significant correlations were found between LTP1 and VETP1 (r = 0.778; p < 0.01), LTP2 and HRTP (r = 0.828; p < 0.01) and VETP2 (r = 0.948; p < 0.01) for power output for both conditions. We conclude that the lactate turn point determination according to the three-phase-model of energy supply is valid in normobaric, normoxic as well as hypoxic conditions. The turn points for La, HR, and VE were reproducible among both conditions, but shifted left to lower workloads. The lactate turn point determination may therefore be used for the prescription of exercise performance in both environments. Key PointsThe lactate turn point concept can be used for performance testing in normoxic and hypoxic conditionsThe better the performance of the athletes the higher is the effect of hypoxiaThe HRTP and LTP2 are strongly correlated that allows a simple performance testing using heart rate measures only.

摘要

本研究的目的是评估在最大增量运动期间,与常氧相比,急性常压低氧对生理变量的反应及其对根据能量供应三阶段模型(阶段 I:肌肉水平代谢平衡;阶段 II:全身水平代谢平衡;阶段 III:代谢不平衡)确定乳酸转折点的影响。 10 名身体健康(最大摄氧量 3.9 [0.49] l·min(-1))、健康男性(平均年龄 [标准差]:25.3 [4.6] 岁)参加了这项研究。所有参与者在常氧和低氧条件下(FiO2 = 14%)进行了两次最大循环测力计测试。测定血乳酸浓度、心率、气体交换数据和最大功率输出以及第一和第二乳酸转折点(LTP1、LTP2)、心率转折点(HRTP)和第一和第二通气转折点(VETP1、VETP2)。由于在常压低氧条件下,所有参考点的绝对功率输出(P)均降低(最大:314 / 274 W;LTP2:218 / 184 W;LTP1:110 / 96 W),以及最大摄氧量(最大:3.90 / 3.23 l·min(-1);LTP2:2.90 / 2.43 l·min(-1);LTP1:1.66 / 1.52 l·min(-1)),低氧和常氧条件下的 LTP1、LTP2、HRTP 和 VETP1、VETP2 的 Pmax 百分比几乎相同。低氧时最大心率(max:190 / 185 bpm)明显降低,但在亚最大控制点未发现差异。最大和两种条件下的所有参考点的血乳酸浓度均无差异。呼吸交换率(RER)(最大:1.28 / 1.08;LTP2:1.13 / 0.98)和氧气(最大:43.4 / 34.0;LTP2:32.1 / 25.4)和二氧化碳(最大:34.1 / 31.6;LTP2:29.1 / 26.1)的通气当量在低氧的一些参考点显著升高。在两种条件下,LTP1 与 VETP1(r = 0.778;p < 0.01)、LTP2 与 HRTP(r = 0.828;p < 0.01)和 VETP2(r = 0.948;p < 0.01)之间存在显著相关性。对于两种条件下的功率输出,我们得出结论,根据能量供应的三阶段模型确定乳酸转折点是有效的。La、HR 和 VE 的转折点在两种条件下都是可重复的,但向左移至较低的工作量。因此,乳酸转折点的确定可用于两种环境下的运动表现的处方。关键点乳酸转折点概念可用于常氧和低氧条件下的性能测试运动员的表现越好,缺氧的影响就越大HRTP 和 LTP2 相关性很强,仅使用心率测量即可进行简单的性能测试。

相似文献

2
%HRmax target heart rate is dependent on heart rate performance curve deflection.
Med Sci Sports Exerc. 2001 Oct;33(10):1726-31. doi: 10.1097/00005768-200110000-00017.
3
Intensity Thresholds and Maximal Lactate Steady State in Small Muscle Group Exercise.
Sports (Basel). 2020 May 28;8(6):77. doi: 10.3390/sports8060077.
4
The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction.
Med Sci Sports Exerc. 1998 Oct;30(10):1475-80. doi: 10.1097/00005768-199810000-00002.
6
Different Heart Rate Patterns During Cardio-Pulmonary Exercise (CPX) Testing in Individuals With Type 1 Diabetes.
Front Endocrinol (Lausanne). 2018 Oct 2;9:585. doi: 10.3389/fendo.2018.00585. eCollection 2018.
7
Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration.
Med Sci Sports Exerc. 2007 Jul;39(7):1098-106. doi: 10.1249/mss.0b013e31805371e7.
8
The First Lactate Threshold Is a Limit for Heavy Occupational Work.
J Funct Morphol Kinesiol. 2020 Aug 25;5(3):66. doi: 10.3390/jfmk5030066.
9
Determination of Anaerobic Threshold by Monitoring the O2 Pulse Changes in Endurance Cyclists.
J Strength Cond Res. 2016 Jun;30(6):1700-7. doi: 10.1519/JSC.0000000000001252.
10
Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects.
Med Sci Sports Exerc. 1997 Jun;29(6):762-8. doi: 10.1097/00005768-199706000-00005.

引用本文的文献

1
Effects of endurance exercise under hypoxic conditions on the gastric emptying rate and intestinal cell damage.
Eur J Appl Physiol. 2025 Jan;125(1):25-35. doi: 10.1007/s00421-024-05523-1. Epub 2024 Oct 25.
3
Anaerobic threshold using sweat lactate sensor under hypoxia.
Sci Rep. 2023 Dec 21;13(1):22865. doi: 10.1038/s41598-023-49369-7.
4
Independent, additive and interactive effects of acute normobaric hypoxia and cold on submaximal and maximal endurance exercise.
Eur J Appl Physiol. 2024 Apr;124(4):1185-1200. doi: 10.1007/s00421-023-05343-9. Epub 2023 Nov 14.
7
Effect of hypoxia and nitrate supplementation on different high-intensity interval-training sessions.
Eur J Appl Physiol. 2021 Sep;121(9):2585-2594. doi: 10.1007/s00421-021-04726-0. Epub 2021 Jun 7.
9
Exogenous glucose oxidation during endurance exercise in hypoxia.
Physiol Rep. 2020 Jul;8(13):e14457. doi: 10.14814/phy2.14457.

本文引用的文献

1
Effect of acute normobaric hypoxia on the ventilatory threshold.
Eur J Appl Physiol. 2014 Aug;114(8):1555-62. doi: 10.1007/s00421-014-2882-1. Epub 2014 Apr 23.
2
Responses to exercise in normobaric hypoxia: comparison of elite and recreational ski mountaineers.
Int J Sports Physiol Perform. 2014 Nov;9(6):978-84. doi: 10.1123/ijspp.2013-0524. Epub 2014 Mar 19.
3
[Individual systemic reactions of human organism under acute hypoxia].
Ross Fiziol Zh Im I M Sechenova. 2012 Nov;98(11):1396-415.
4
Hypoxic hypoxia at moderate altitudes: review of the state of the science.
Aviat Space Environ Med. 2012 Oct;83(10):975-84. doi: 10.3357/asem.3315.2012.
5
Differences in cardio-ventilatory responses to hypobaric and normobaric hypoxia: a review.
Aviat Space Environ Med. 2012 Jul;83(7):677-84. doi: 10.3357/asem.3182.2012.
6
Comments on Point:Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia.
J Appl Physiol (1985). 2012 May;112(10):1788-94. doi: 10.1152/japplphysiol.00356.2012.
7
Cerebral perturbations during exercise in hypoxia.
Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R903-16. doi: 10.1152/ajpregu.00555.2011. Epub 2012 Feb 8.
8
Respiratory physiology: adaptations to high-level exercise.
Br J Sports Med. 2012 May;46(6):381-4. doi: 10.1136/bjsports-2011-090824. Epub 2012 Jan 20.
10
Special needs to prescribe exercise intensity for scientific studies.
Cardiol Res Pract. 2010 Dec 15;2011:209302. doi: 10.4061/2011/209302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验