Suppr超能文献

一种二聚体亚氯酸盐歧化酶在肺炎克雷伯菌MGH 78578中表现出产生氧气的活性,并作为亚氯酸盐抗氧化剂发挥作用。

A dimeric chlorite dismutase exhibits O2-generating activity and acts as a chlorite antioxidant in Klebsiella pneumoniae MGH 78578.

作者信息

Celis Arianna I, Geeraerts Zachary, Ngmenterebo David, Machovina Melodie M, Kurker Richard C, Rajakumar Kumar, Ivancich Anabella, Rodgers Kenton R, Lukat-Rodgers Gudrun S, DuBois Jennifer L

机构信息

Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States.

出版信息

Biochemistry. 2015 Jan 20;54(2):434-46. doi: 10.1021/bi501184c. Epub 2014 Dec 19.

Abstract

Chlorite dismutases (Clds) convert chlorite to O2 and Cl(-), stabilizing heme in the presence of strong oxidants and forming the O═O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite.

摘要

亚氯酸盐歧化酶(Clds)将亚氯酸盐转化为O₂和Cl⁻,在强氧化剂存在的情况下稳定血红素,并高效形成O═O键。病原体肺炎克雷伯菌的这种酶(KpCld)代表了Clds的一个亚家族,尽管它们具有截短的单体结构,以二聚体而非五聚体形式存在,且来自革兰氏阴性菌且无已知降解亚氯酸盐的需求,但它们与高效产生O₂的Clds共享大部分活性位点结构。我们推测,KpCld与其亚家族中的其他成员一样,应该能够产生O₂并可能具有体内抗氧化功能。在此,研究表明,相对于呼吸型Clds,它降解亚氯酸盐的周转数有限,部分原因是活性位点中次氯酸的损失和血红素的破坏。观察到次氯酸,即预期伴随氧原子转移至铁血红素的离去基团,与光谱测量预测并从相关蛋白质晶体结构推断出的更开放、溶剂暴露的血红素环境一致。在周转条件下,KpCld比与高氯酸盐呼吸相关的已充分表征的Clds更容易受到氧化降解。然而,相对于Δcld基因敲除菌株,野生型肺炎克雷伯菌在氯酸盐存在的情况下具有显著的生长优势,特别是在硝酸盐呼吸条件下。这表明KpCld的生理功能可能是对内源性产生的亚氯酸盐进行解毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/4303309/e5721de0723a/bi-2014-01184c_0010.jpg

相似文献

2
Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes.
Biochemistry. 2018 Mar 6;57(9):1501-1516. doi: 10.1021/acs.biochem.7b01278. Epub 2018 Feb 16.
3
Active Sites of O-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations.
Biochemistry. 2017 Aug 29;56(34):4509-4524. doi: 10.1021/acs.biochem.7b00572. Epub 2017 Aug 17.
4
Mechanism of chlorite degradation to chloride and dioxygen by the enzyme chlorite dismutase.
Arch Biochem Biophys. 2015 May 15;574:18-26. doi: 10.1016/j.abb.2015.02.031. Epub 2015 Mar 4.
5
Dimeric chlorite dismutase from the nitrogen-fixing cyanobacterium Cyanothece sp. PCC7425.
Mol Microbiol. 2015 Jun;96(5):1053-68. doi: 10.1111/mmi.12989. Epub 2015 Apr 6.
6
Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.
Dalton Trans. 2013 Mar 7;42(9):3156-69. doi: 10.1039/c2dt32312e. Epub 2012 Dec 17.
7
8
Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from Nitrobacter winogradskyi.
J Bacteriol. 2011 May;193(10):2408-17. doi: 10.1128/JB.01262-10. Epub 2011 Mar 25.
9
Chlorite dismutases - a heme enzyme family for use in bioremediation and generation of molecular oxygen.
Biotechnol J. 2014 Apr;9(4):461-73. doi: 10.1002/biot.201300210. Epub 2014 Feb 12.
10
Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15654-9. doi: 10.1073/pnas.0804279105. Epub 2008 Oct 7.

引用本文的文献

2
Parapatric speciation of in serpentinite-hosted aquifers in Oman.
Front Microbiol. 2023 Apr 12;14:1138656. doi: 10.3389/fmicb.2023.1138656. eCollection 2023.
3
Chlorine redox chemistry is widespread in microbiology.
ISME J. 2023 Jan;17(1):70-83. doi: 10.1038/s41396-022-01317-5. Epub 2022 Oct 6.
4
Roles of High-valent Hemes and pH Dependence in Halite Decomposition Catalyzed by Chlorite Dismutase from .
ACS Catal. 2022 Jul 15;12(14):8641-8657. doi: 10.1021/acscatal.2c01428. Epub 2022 Jul 6.
5
Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography.
Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1251-1269. doi: 10.1107/S2059798321009025. Epub 2021 Sep 27.
6
Arresting the Catalytic Arginine in Chlorite Dismutases: Impact on Heme Coordination, Thermal Stability, and Catalysis.
Biochemistry. 2021 Mar 2;60(8):621-634. doi: 10.1021/acs.biochem.0c00910. Epub 2021 Feb 15.
7
Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions.
Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140536. doi: 10.1016/j.bbapap.2020.140536. Epub 2020 Sep 4.
8
Structure and reactivity of chlorite dismutase nitrosyls.
J Inorg Biochem. 2020 Oct;211:111203. doi: 10.1016/j.jinorgbio.2020.111203. Epub 2020 Jul 26.
9
Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle.
ISME J. 2020 May;14(5):1194-1206. doi: 10.1038/s41396-020-0599-1. Epub 2020 Feb 5.
10
Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds.
Front Microbiol. 2018 Dec 12;9:3079. doi: 10.3389/fmicb.2018.03079. eCollection 2018.

本文引用的文献

1
Transiently produced hypochlorite is responsible for the irreversible inhibition of chlorite dismutase.
Biochemistry. 2014 May 20;53(19):3145-57. doi: 10.1021/bi500401k. Epub 2014 May 6.
2
Mechanism of reaction of chlorite with mammalian heme peroxidases.
J Inorg Biochem. 2014 Jun;135(100):10-9. doi: 10.1016/j.jinorgbio.2014.02.010. Epub 2014 Feb 28.
4
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
5
6
Structure and evolution of chlorate reduction composite transposons.
mBio. 2013 Aug 6;4(4):e00379-13. doi: 10.1128/mBio.00379-13.
8
Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.
Dalton Trans. 2013 Mar 7;42(9):3156-69. doi: 10.1039/c2dt32312e. Epub 2012 Dec 17.
9
Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures.
Biochemistry. 2012 Nov 27;51(47):9501-12. doi: 10.1021/bi3013033. Epub 2012 Nov 14.
10
Modeling protein evolution with several amino acid replacement matrices depending on site rates.
Mol Biol Evol. 2012 Oct;29(10):2921-36. doi: 10.1093/molbev/mss112. Epub 2012 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验