Suppr超能文献

癌细胞表型转换的非平衡种群动态

Nonequilibrium population dynamics of phenotype conversion of cancer cells.

作者信息

Zhou Joseph Xu, Pisco Angela Oliveira, Qian Hong, Huang Sui

机构信息

Institute for Systems Biology, Seattle, Washington, United States of America; Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California, United States of America; Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta, Canada.

Institute for Systems Biology, Seattle, Washington, United States of America; Systems Biology Program, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS One. 2014 Dec 1;9(12):e110714. doi: 10.1371/journal.pone.0110714. eCollection 2014.

Abstract

Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection) or by environment-instructed transitions (Lamarckism induction). This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

摘要

肿瘤发生是一个动态生物学过程,涉及不同癌细胞亚群以不同速率增殖并在它们之间相互转化。在本文中,我们提出了一个种群动力学的数学框架,该框架考虑了癌细胞群体之间独特的生长速率和细胞间转变。我们的数学框架表明,生长和转变都会影响癌细胞亚群的比例,但后者更为显著。我们推导出了不同癌细胞类型能够维持独特亚群的条件,并且我们还解释了为什么基于假定的表面标志物进行细胞分选后总是存在一个稳定的固定比例。细胞分数比可以通过改变亚群的生长速率(达尔文主义选择)或通过环境诱导的转变(拉马克主义诱导)来改变。这一见解有助于我们理解癌细胞异质性的动力学,并引导我们找到克服癌症耐药性的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f1/4249833/ce619c78a683/pone.0110714.g001.jpg

相似文献

1
Nonequilibrium population dynamics of phenotype conversion of cancer cells.
PLoS One. 2014 Dec 1;9(12):e110714. doi: 10.1371/journal.pone.0110714. eCollection 2014.
2
Strategies for cancer stem cell elimination: insights from mathematical modeling.
J Theor Biol. 2012 Apr 7;298:32-41. doi: 10.1016/j.jtbi.2011.12.016. Epub 2011 Dec 23.
3
On a mathematical model of tumor growth based on cancer stem cells.
Math Biosci Eng. 2013 Feb;10(1):263-78. doi: 10.3934/mbe.2013.10.263.
4
Chemotherapy in heterogeneous cultures of cancer cells with interconversion.
Phys Biol. 2014 Nov 27;12(1):016002. doi: 10.1088/1478-3975/12/1/016002.
5
Intra-tumor heterogeneity from a cancer stem cell perspective.
Mol Cancer. 2017 Feb 16;16(1):41. doi: 10.1186/s12943-017-0600-4.
7
Differential in vivo tumorigenicity of distinct subpopulations from a luminal-like breast cancer xenograft.
PLoS One. 2014 Nov 24;9(11):e113278. doi: 10.1371/journal.pone.0113278. eCollection 2014.
8
Characterizing inhibited tumor growth in stem-cell-driven non-spatial cancers.
Math Biosci. 2015 Dec;270(Pt A):135-41. doi: 10.1016/j.mbs.2015.08.009. Epub 2015 Sep 4.
9
The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity.
J Theor Biol. 2016 Feb 7;390:40-9. doi: 10.1016/j.jtbi.2015.11.008. Epub 2015 Nov 28.

引用本文的文献

1
3
Unified tumor growth mechanisms from multimodel inference and dataset integration.
PLoS Comput Biol. 2023 Jul 5;19(7):e1011215. doi: 10.1371/journal.pcbi.1011215. eCollection 2023 Jul.
4
Statistical inference of the rates of cell proliferation and phenotypic switching in cancer.
J Theor Biol. 2023 Jul 7;568:111497. doi: 10.1016/j.jtbi.2023.111497. Epub 2023 Apr 21.
5
A model for the intrinsic limit of cancer therapy: Duality of treatment-induced cell death and treatment-induced stemness.
PLoS Comput Biol. 2022 Jul 25;18(7):e1010319. doi: 10.1371/journal.pcbi.1010319. eCollection 2022 Jul.
6
Tipping the Balance: A Criticality Perspective.
Entropy (Basel). 2022 Mar 14;24(3):405. doi: 10.3390/e24030405.
7
A mathematical model for phenotypic heterogeneity in breast cancer with implications for therapeutic strategies.
J R Soc Interface. 2022 Jan;19(186):20210803. doi: 10.1098/rsif.2021.0803. Epub 2022 Jan 26.
10
Modeling heterogeneous tumor growth dynamics and cell-cell interactions at single-cell and cell-population resolution.
Curr Opin Syst Biol. 2019 Oct;17:24-34. doi: 10.1016/j.coisb.2019.09.005. Epub 2019 Sep 16.

本文引用的文献

1
Non-Darwinian dynamics in therapy-induced cancer drug resistance.
Nat Commun. 2013;4:2467. doi: 10.1038/ncomms3467.
2
The time-evolution of DCIS size distributions with applications to breast cancer growth and progression.
Math Med Biol. 2014 Dec;31(4):353-64. doi: 10.1093/imammb/dqt014. Epub 2013 Jul 19.
4
Genome evolution during progression to breast cancer.
Genome Res. 2013 Jul;23(7):1097-108. doi: 10.1101/gr.151670.112. Epub 2013 Apr 8.
5
Evolution and dynamics of pancreatic cancer progression.
Oncogene. 2013 Nov 7;32(45):5253-60. doi: 10.1038/onc.2013.29. Epub 2013 Feb 18.
8
Boolean modeling in systems biology: an overview of methodology and applications.
Phys Biol. 2012 Oct;9(5):055001. doi: 10.1088/1478-3975/9/5/055001. Epub 2012 Sep 25.
9
Quasi-potential landscape in complex multi-stable systems.
J R Soc Interface. 2012 Dec 7;9(77):3539-53. doi: 10.1098/rsif.2012.0434. Epub 2012 Aug 29.
10
Genotype-phenotype mapping in a post-GWAS world.
Trends Genet. 2012 Sep;28(9):421-6. doi: 10.1016/j.tig.2012.06.003. Epub 2012 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验