Suppr超能文献

术前弥散张量成像:改善脑肿瘤患者的神经外科手术预后

Preoperative diffusion tensor imaging: improving neurosurgical outcomes in brain tumor patients.

作者信息

Ulmer John L, Klein Andrew P, Mueller Wade M, DeYoe Edgar A, Mark Leighton P

机构信息

Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

出版信息

Neuroimaging Clin N Am. 2014 Nov;24(4):599-617. doi: 10.1016/j.nic.2014.08.002. Epub 2014 Nov 1.

Abstract

Preoperative mapping has revolutionized neurosurgical care for brain tumor patients. Maximizing resections has improved diagnosis, optimized treatment algorithms, and decreased potentially devastating postoperative deficits. Although mapping has multiple steps and complimentary localization sources, diffusion tensor imaging (DTI) excels in its essential role in depicting white matter tracts. A thorough understanding of DTI, data visualization methods, and limitations with mastery of functional and dysfunctional white matter anatomy is necessary to realize the potential of DTI. By establishing spatial relationships between lesion borders and functional networks preoperatively and intraoperatively, DTI is central to high-risk neurosurgical resections and becoming the standard of care.

摘要

术前图谱绘制彻底改变了脑肿瘤患者的神经外科治疗。最大限度地切除肿瘤改善了诊断、优化了治疗方案,并减少了可能造成严重后果的术后功能缺损。尽管图谱绘制有多个步骤和辅助定位来源,但弥散张量成像(DTI)在描绘白质束方面发挥着至关重要的作用。要充分发挥DTI的潜力,必须深入了解DTI、数据可视化方法及其局限性,同时掌握正常和异常白质解剖结构。通过在术前和术中建立病变边界与功能网络之间的空间关系,DTI对于高风险神经外科手术切除至关重要,并正成为治疗的标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验