Mitsi Maria, Handschin Stephan, Gerber Isabel, Schwartländer Ruth, Klotzsch Enrico, Wepf Roger, Vogel Viola
Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland.
SCOPEM - Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland.
Biomaterials. 2015 Jan;36:66-79. doi: 10.1016/j.biomaterials.2014.08.012. Epub 2014 Oct 13.
Fibronectin is a globular protein that circulates in the blood and undergoes fibrillogenesis if stretched or under other partially denaturing conditions, even in the absence of cells. Stretch assays made by pulling fibers from droplets of solutions containing high concentrations of fibronectin have previously been introduced in mechanobiology, particularly to ask how bacteria and cells exploit the stretching of fibronectin fibers within extracellular matrix to mechano-regulate its chemical display. Our electron microscopy analysis of their ultrastructure now reveals that the manually pulled fibronectin fibers are composed of densely packed lamellar spirals, whose interlamellar distances are dictated by ion-tunable electrostatic interactions. Our findings suggest that fibrillogenesis proceeds via an irreversible sheet-to-fiber transition as the fibronectin sheet formed at the air-liquid interface of the droplet is pulled off by a sharp tip. This far from equilibrium process is driven by the externally applied force, interfacial surface tension, shear-induced fibronectin self-association, and capillary force-induced buffer drainage. The ultrastructural characterization is then contrasted with previous FRET studies that characterized the molecular strain within these manually pulled fibers. Particularly relevant for stretch-dependent binding studies is the finding that the interior fiber surfaces are accessible to nanoparticles smaller than 10 nm. In summary, our study discovers the underpinning mechanism by which highly hierarchically structured fibers can be generated with unique mechanical and mechano-chemical properties, a concept that might be extended to other bio- or biomimetic polymers.
纤连蛋白是一种球状蛋白,它在血液中循环,并且在拉伸或其他部分变性条件下,即使没有细胞存在,也会发生纤维形成。之前在力学生物学中已经引入了通过从含有高浓度纤连蛋白的溶液液滴中拉伸纤维来进行的拉伸试验,特别是用于研究细菌和细胞如何利用细胞外基质中纤连蛋白纤维的拉伸来机械调节其化学展示。我们对其超微结构的电子显微镜分析现在揭示,手动拉伸的纤连蛋白纤维由紧密堆积的层状螺旋组成,其层间距离由离子可调的静电相互作用决定。我们的研究结果表明,随着在液滴气液界面形成的纤连蛋白片层被尖锐尖端拉离,纤维形成过程通过不可逆的片层到纤维的转变进行。这个远离平衡的过程是由外部施加的力、界面表面张力、剪切诱导的纤连蛋白自组装以及毛细力诱导的缓冲液排出驱动的。然后将这种超微结构表征与之前表征这些手动拉伸纤维内部分子应变的荧光共振能量转移(FRET)研究进行对比。对于拉伸依赖性结合研究特别相关的是发现内部纤维表面对于小于10纳米的纳米颗粒是可及的。总之,我们的研究发现了一种基础机制,通过该机制可以生成具有独特机械和机械化学性质的高度分层结构的纤维,这一概念可能会扩展到其他生物或仿生聚合物。