Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, 4058, Switzerland.
Adv Sci (Weinh). 2023 Aug;10(24):e2300812. doi: 10.1002/advs.202300812. Epub 2023 Jun 25.
Cells regulate adhesion to the fibrillar extracellular matrix (ECM) of which fibronectin is an essential component. However, most studies characterize cell adhesion to globular fibronectin substrates at time scales long after cells polarize and migrate. To overcome this limitation, a simple and scalable method to engineer biomimetic 3D fibrillar fibronectin matrices is introduced and how they are sensed by fibroblasts from the onset of attachment is characterized. Compared to globular fibronectin substrates, fibroblasts accelerate adhesion initiation and strengthening within seconds to fibrillar fibronectin matrices via α5β1 integrin and syndecan-4. This regulation, which additionally accelerates on stiffened fibrillar matrices, involves actin polymerization, actomyosin contraction, and the cytoplasmic proteins paxillin, focal adhesion kinase, and phosphoinositide 3-kinase. Furthermore, this immediate sensing and adhesion of fibroblast to fibrillar fibronectin guides migration speed, persistency, and proliferation range from hours to weeks. The findings highlight that fibrillar fibronectin matrices, compared to widely-used globular fibronectin, trigger short- and long-term cell decisions very differently and urge the use of such matrices to better understand in vivo interactions of cells and ECMs. The engineered fibronectin matrices, which can be printed onto non-biological surfaces without loss of function, open avenues for various cell biological, tissue engineering and medical applications.
细胞调节与细胞外纤维状基质(ECM)的黏附,其中纤维连接蛋白是其重要组成部分。然而,大多数研究都在细胞极化和迁移后很长一段时间内研究细胞对球状纤维连接蛋白底物的黏附情况。为了克服这一局限性,引入了一种简单且可扩展的方法来构建仿生 3D 纤维状纤维连接蛋白基质,并对成纤维细胞从附着开始时对其的感知进行了表征。与球状纤维连接蛋白底物相比,成纤维细胞通过α5β1 整合素和 syndecan-4 在几秒钟内加速对纤维状纤维连接蛋白基质的黏附起始和增强。这种调节还会加速纤维状基质的刚性化,涉及到肌动蛋白聚合、肌球蛋白收缩以及细胞质蛋白 paxillin、粘着斑激酶和磷酸肌醇 3-激酶。此外,成纤维细胞对纤维状纤维连接蛋白的即时感知和黏附指导了迁移速度、持久性和增殖范围,从几小时到几周不等。这些发现强调了纤维状纤维连接蛋白基质与广泛使用的球状纤维连接蛋白相比,会非常不同地触发短期和长期的细胞决策,并促使使用此类基质来更好地理解细胞和细胞外基质在体内的相互作用。这些经过工程设计的纤维连接蛋白基质可以在不损失功能的情况下打印到非生物表面上,为各种细胞生物学、组织工程和医学应用开辟了途径。