School of Animal Biology, University of Western Australia, Perth, Australia; Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A UMR 8256 Biological Adaptation and Ageing, Paris, France.
School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
Brain Stimul. 2015 Jan-Feb;8(1):114-23. doi: 10.1016/j.brs.2014.09.012. Epub 2014 Oct 16.
Repetitive transcranial magnetic stimulation is increasingly used as a treatment for neurological dysfunction. Therapeutic effects have been reported for low intensity rTMS (LI-rTMS) although these remain poorly understood.
Our study describes for the first time a systematic comparison of the cellular and molecular changes in neurons in vitro induced by low intensity magnetic stimulation at different frequencies.
We applied 5 different low intensity repetitive magnetic stimulation (LI-rMS) protocols to neuron-enriched primary cortical cultures for 4 days and assessed survival, and morphological and biochemical change.
We show pattern-specific effects of LI-rMS: simple frequency pulse trains (10 Hz and 100 Hz) impaired cell survival, while more complex stimulation patterns (theta-burst and a biomimetic frequency) did not. Moreover, only 1 Hz stimulation modified neuronal morphology, inhibiting neurite outgrowth. To understand mechanisms underlying these differential effects, we measured intracellular calcium concentration during LI-rMS and subsequent changes in gene expression. All LI-rMS frequencies increased intracellular calcium, but rather than influx from the extracellular milieu typical of depolarization, all frequencies induced calcium release from neuronal intracellular stores. Furthermore, we observed pattern-specific changes in expression of genes related to apoptosis and neurite outgrowth, consistent with our morphological data on cell survival and neurite branching.
Thus, in addition to the known effects on cortical excitability and synaptic plasticity, our data demonstrate that LI-rMS can change the survival and structural complexity of neurons. These findings provide a cellular and molecular framework for understanding what low intensity magnetic stimulation may contribute to human rTMS outcomes.
重复经颅磁刺激(rTMS)作为一种治疗神经功能障碍的方法,应用越来越广泛。尽管已经报道了低强度 rTMS(LI-rTMS)的治疗效果,但这些效果仍知之甚少。
本研究首次系统比较了不同频率的低强度磁场刺激对体外神经元的细胞和分子变化。
我们将 5 种不同的低强度重复磁刺激(LI-rMS)方案应用于富含神经元的原代皮质培养物 4 天,评估细胞存活率、形态和生化变化。
我们显示了 LI-rMS 的模式特异性效应:简单的频率脉冲串(10 Hz 和 100 Hz)会损害细胞存活率,而更复杂的刺激模式(θ爆发和仿生频率)则不会。此外,只有 1 Hz 的刺激改变了神经元的形态,抑制了神经突的生长。为了了解这些差异效应的机制,我们在 LI-rMS 期间测量了细胞内钙离子浓度以及随后的基因表达变化。所有 LI-rMS 频率均增加了细胞内钙离子,但与典型去极化的细胞外环境钙离子内流不同,所有频率均诱导了神经元细胞内储存钙离子的释放。此外,我们观察到与细胞存活和神经突分支相关的基因表达的模式特异性变化,与我们关于细胞存活和神经突分支的形态学数据一致。
因此,除了已知对皮质兴奋性和突触可塑性的影响外,我们的数据还表明,LI-rMS 可以改变神经元的存活和结构复杂性。这些发现为理解低强度磁刺激对人类 rTMS 结果的可能贡献提供了细胞和分子框架。