Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France.
Int J Mol Sci. 2023 Nov 17;24(22):16456. doi: 10.3390/ijms242216456.
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
神经和精神疾病通常无法治愈,因此创新的非药物治疗方法,包括非侵入性脑刺激,作为触发内在神经修复机制的治疗工具很有吸引力。一种常见的脑刺激技术涉及应用脉冲磁场到受影响的大脑区域。然而,由于使用了许多不同的刺激参数,对磁场刺激的研究变得复杂。磁场刺激通常分为两种联系不紧密的方法:(1)临床使用的高强度刺激(0.5-2 特斯拉,T)和(2)实验或流行病学研究的低强度刺激(μT-mT)。据报道,这两种方法的人体试验都有有益的结果,但基础生物学尚不清楚,因此最佳刺激参数仍未确定。在这里,我们旨在汇集从人体、动物和体外研究中获得的关于磁场脑刺激生物学的知识。我们确定了不同刺激方案的共同影响;展示了不同类型的脉冲磁场如何与神经组织相互作用;并描述了其作用的细胞机制——从细胞内信号级联反应,到突触可塑性和网络活动的调制,再到神经回路的长期结构变化。磁生物学的最新进展显示了明确的机制,这些机制可能解释了大脑中低强度刺激的效果。由于低强度聚焦磁场刺激具有高强度刺激所不具备的广泛刺激参数,因此成为一种潜在的强大治疗工具,可用于人体应用。