Suppr超能文献

受限昆虫行为的自动跟踪与分析

Automated tracking and analysis of behavior in restrained insects.

作者信息

Shen Minmin, Szyszka Paul, Deussen Oliver, Galizia C Giovanni, Merhof Dorit

机构信息

INCIDE Center (Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration), University of Konstanz, Germany; School of Software Engineering, South China University of Technology, PR China.

Institute of Neurobiology, University of Konstanz, Germany.

出版信息

J Neurosci Methods. 2015 Jan 15;239:194-205. doi: 10.1016/j.jneumeth.2014.10.021. Epub 2014 Nov 4.

Abstract

BACKGROUND

Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects.

NEW METHOD

Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part.

RESULTS

We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm.

COMPARISON WITH EXISTING METHODS

Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects' body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications.

CONCLUSIONS

Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.

摘要

背景

昆虫行为通常由人类观察者进行监测,并以二元反应的形式进行测量。这种方法耗时且无法对单个动物的行为表现进行精细分级测量。为克服这一局限性,我们开发了一种计算机视觉系统,该系统能够自动跟踪被束缚昆虫的身体部位。

新方法

我们的系统将连续视频裁剪成具有静态背景的单独镜头。然后分割出昆虫的头部,并对检测到的移动物体进行预处理以排除检测错误。提出了一种基于贝叶斯的算法来识别每个身体部位的轨迹。

结果

我们通过监测蜜蜂和蚂蚁口器及触角的运动,展示了这种新型跟踪算法的应用,并使用常见的联想学习范式证明了其适用于分析单个蜜蜂的行为表现。

与现有方法的比较

我们的跟踪系统与现有系统的不同之处在于,它不需要对每个视频进行手动标注,并且即使在处理低帧率视频时也能够跟踪昆虫的身体部位。我们的系统可推广用于其他昆虫跟踪应用。

结论

我们的系统为完全自动化监测被束缚昆虫的行为奠定了基础,并考虑到了分级行为中的个体差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验