Suppr超能文献

突触小泡循环中的二酰甘油、磷脂酸及其代谢酶。

Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling.

作者信息

Tu-Sekine Becky, Goldschmidt Hana, Raben Daniel M

机构信息

The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Adv Biol Regul. 2015 Jan;57:147-52. doi: 10.1016/j.jbior.2014.09.010. Epub 2014 Sep 28.

Abstract

The synaptic vesicle (SV) cycle includes exocytosis of vesicles loaded with a neurotransmitter such as glutamate, coordinated recovery of SVs by endocytosis, refilling of vesicles, and subsequent release of the refilled vesicles from the presynaptic bouton. SV exocytosis is tightly linked with endocytosis, and variations in the number of vesicles, and/or defects in the refilling of SVs, will affect the amount of neurotransmitter available for release (Sudhof, 2004). There is increasing interest in the roles synaptic vesicle lipids and lipid metabolizing enzymes play in this recycling. Initial emphasis was placed on the role of polyphosphoinositides in SV cycling as outlined in a number of reviews (Lim and Wenk, 2009; Martin, 2012; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Other lipids are now recognized to also play critical roles. For example, PLD1 (Humeau et al., 2001; Rohrbough and Broadie, 2005) and some DGKs (Miller et al., 1999; Nurrish et al., 1999) play roles in neurotransmission which is consistent with the critical roles for phosphatidic acid (PtdOH) and diacylglycerol (DAG) in the regulation of SV exo/endocytosis (Cremona et al., 1999; Exton, 1994; Huttner and Schmidt, 2000; Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). PLD generates phosphatidic acid by catalyzing the hydrolysis of phosphatidylcholine (PtdCho) and in some systems this PtdOH is de-phosphorylated to generate DAG. In contrast, DGK catalyzes the phosphorylation of DAG thereby converting it into PtdOH. While both enzymes are poised to regulate the levels of DAG and PtdOH, therefore, they both lead to the generation of PtdOH and could have opposite effects on DAG levels. This is particularly important for SV cycling as PtdOH and DAG are both needed for evoked exocytosis (Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Two lipids and their involved metabolic enzymes, two sphingolipids have also been implicated in exocytosis: sphingosine (Camoletto et al., 2009; Chan et al., 2012; Chan and Sieburth, 2012; Darios et al., 2009; Kanno et al., 2010; Rohrbough et al., 2004) and sphingosine-1-phosphate (Chan, Hu, 2012; Chan and Sieburth, 2012; Kanno et al., 2010). Finally a number of reports have focused on the somewhat less well studies roles of sphingolipids and cholesterol in SV cycling. In this report, we review the recent understanding of the roles PLDs, DGKs, and DAG lipases, as well as sphingolipids and cholesterol play in synaptic vesicle cycling.

摘要

突触小泡(SV)循环包括装载神经递质(如谷氨酸)的小泡的胞吐作用、通过内吞作用对突触小泡的协同回收、小泡的再填充以及随后从突触前终扣释放再填充的小泡。突触小泡胞吐作用与内吞作用紧密相连,小泡数量的变化和/或突触小泡再填充的缺陷会影响可用于释放的神经递质的量(Sudhof,2004)。人们对突触小泡脂质和脂质代谢酶在这种循环中所起的作用越来越感兴趣。如一些综述所述(Lim和Wenk,2009;Martin,2012;Puchkov和Haucke,2013;Rohrbough和Broadie,2005),最初的重点是多磷酸肌醇在突触小泡循环中的作用。现在人们认识到其他脂质也起着关键作用。例如,PLD1(Humeau等人,2001;Rohrbough和Broadie,2005)和一些二酰甘油激酶(DGK)(Miller等人,1999;Nurrish等人,1999)在神经传递中起作用,这与磷脂酸(PtdOH)和二酰甘油(DAG)在调节突触小泡胞吐/内吞作用中的关键作用一致(Cremona等人,1999;Exton,1994;Huttner和Schmidt,2000;Lim和Wenk,2009;Puchkov和Haucke,2013;Rohrbough和Broadie,2005)。PLD通过催化磷脂酰胆碱(PtdCho)的水解产生磷脂酸,在某些系统中,这种PtdOH会去磷酸化生成DAG。相反,DGK催化DAG的磷酸化,从而将其转化为PtdOH。因此,虽然这两种酶都准备调节DAG和PtdOH的水平,但它们都会导致PtdOH的产生,并且可能对DAG水平产生相反的影响。这对突触小泡循环尤为重要,因为诱发的胞吐作用需要PtdOH和DAG(Lim和Wenk,2009;Puchkov和Haucke,2013;Rohrbough和Broadie,2005)。两种脂质及其相关的代谢酶,两种鞘脂也与胞吐作用有关:鞘氨醇(Camoletto等人,2009;Chan等人,2012;Chan和Sieburth,2012;Darios等人,2009;Kanno等人,2010;Rohrbough等人,2004)和鞘氨醇-1-磷酸(Chan,Hu,2012;Chan和Sieburth,2012;Kanno等人,2010)。最后,一些报告关注了鞘脂和胆固醇在突触小泡循环中研究较少的作用。在本报告中,我们综述了对PLD、DGK和DAG脂肪酶以及鞘脂和胆固醇在突触小泡循环中所起作用的最新认识。

相似文献

1
Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling.
Adv Biol Regul. 2015 Jan;57:147-52. doi: 10.1016/j.jbior.2014.09.010. Epub 2014 Sep 28.
2
Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD?
Adv Biol Regul. 2018 Jan;67:141-147. doi: 10.1016/j.jbior.2017.09.009. Epub 2017 Sep 28.
3
Phosphatidic acid and neurotransmission.
Adv Biol Regul. 2017 Jan;63:15-21. doi: 10.1016/j.jbior.2016.09.004. Epub 2016 Sep 20.
4
Roles of DGKs in neurons: Postsynaptic functions?
Adv Biol Regul. 2020 Jan;75:100688. doi: 10.1016/j.jbior.2019.100688. Epub 2019 Nov 28.
5
Diacylglycerol kinases: Relationship to other lipid kinases.
Adv Biol Regul. 2019 Jan;71:104-110. doi: 10.1016/j.jbior.2018.09.014. Epub 2018 Sep 28.
6
Diacylglycerol kinase θ: regulation and stability.
Adv Biol Regul. 2013 Jan;53(1):118-26. doi: 10.1016/j.jbior.2012.09.007. Epub 2012 Sep 20.
7
Phosphorylation of DGK.
Adv Biol Regul. 2023 May;88:100941. doi: 10.1016/j.jbior.2022.100941. Epub 2022 Dec 7.
8
Regulation and roles of neuronal diacylglycerol kinases: a lipid perspective.
Crit Rev Biochem Mol Biol. 2011 Oct;46(5):353-64. doi: 10.3109/10409238.2011.577761. Epub 2011 May 4.
9
Greasing the synaptic vesicle cycle by membrane lipids.
Trends Cell Biol. 2013 Oct;23(10):493-503. doi: 10.1016/j.tcb.2013.05.002. Epub 2013 Jun 8.
10
A new method for quantifying the enzyme activity of DGKs.
Adv Biol Regul. 2024 Jan;91:100998. doi: 10.1016/j.jbior.2023.100998. Epub 2023 Nov 10.

引用本文的文献

2
Lipidomics reveals potential biomarkers and pathophysiological insights in the progression of diabetic kidney disease.
Metabol Open. 2025 Mar 3;25:100354. doi: 10.1016/j.metop.2025.100354. eCollection 2025 Mar.
3
PLD1 promotes spindle assembly and migration through regulating autophagy in mouse oocyte meiosis.
Autophagy. 2024 Jul;20(7):1616-1638. doi: 10.1080/15548627.2024.2333164. Epub 2024 Mar 27.
4
DIP2 is a unique regulator of diacylglycerol lipid homeostasis in eukaryotes.
Elife. 2022 Jun 29;11:e77665. doi: 10.7554/eLife.77665.
5
Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice.
Transl Psychiatry. 2022 Mar 29;12(1):129. doi: 10.1038/s41398-022-01881-6.
6
Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study.
Biomedicines. 2021 Apr 29;9(5):491. doi: 10.3390/biomedicines9050491.
7
Diacylglycerol kinases regulate TRPV1 channel activity.
J Biol Chem. 2020 Jun 12;295(24):8174-8185. doi: 10.1074/jbc.RA119.012505. Epub 2020 Apr 28.
8
PX Domain-Containing Kinesin KIF16B and Microtubule-Dependent Intracellular Movements.
J Membr Biol. 2020 Apr;253(2):101-108. doi: 10.1007/s00232-020-00110-9. Epub 2020 Mar 5.
9
Roles of DGKs in neurons: Postsynaptic functions?
Adv Biol Regul. 2020 Jan;75:100688. doi: 10.1016/j.jbior.2019.100688. Epub 2019 Nov 28.
10
Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications.
Front Cell Dev Biol. 2019 Jun 4;7:83. doi: 10.3389/fcell.2019.00083. eCollection 2019.

本文引用的文献

1
Coupling between endocytosis and sphingosine kinase 1 recruitment.
Nat Cell Biol. 2014 Jul;16(7):652-62. doi: 10.1038/ncb2987. Epub 2014 Jun 15.
2
The roles of diacylglycerol kinases in the central nervous system: review of genetic studies in mice.
J Pharmacol Sci. 2014;124(3):336-43. doi: 10.1254/jphs.13r07cr. Epub 2014 Mar 4.
3
DGKζ under stress conditions: “to be nuclear or cytoplasmic, that is the question”.
Adv Biol Regul. 2014 Jan;54:242-53. doi: 10.1016/j.jbior.2013.08.007.
4
Nuclear phospholipase C-β1 and diacylglycerol LIPASE-α in brain cortical neurons.
Adv Biol Regul. 2014 Jan;54:12-23. doi: 10.1016/j.jbior.2013.09.003. Epub 2013 Sep 17.
6
Phosphatidic acid-mediated signaling.
Adv Exp Med Biol. 2013;991:159-76. doi: 10.1007/978-94-007-6331-9_9.
7
Greasing the synaptic vesicle cycle by membrane lipids.
Trends Cell Biol. 2013 Oct;23(10):493-503. doi: 10.1016/j.tcb.2013.05.002. Epub 2013 Jun 8.
9
The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 5;367(1607):3264-75. doi: 10.1098/rstb.2011.0387.
10
Distinctive roles of PLD signaling elicited by oxidative stress in synaptic endings from adult and aged rats.
Biochim Biophys Acta. 2012 Dec;1823(12):2136-48. doi: 10.1016/j.bbamcr.2012.09.005. Epub 2012 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验