Suppr超能文献

总体平均事件相关电位图像绘制与统计:一种比较不同受试者和条件下事件相关单次试验脑电图活动变异性的方法。

Grand average ERP-image plotting and statistics: A method for comparing variability in event-related single-trial EEG activities across subjects and conditions.

作者信息

Delorme Arnaud, Miyakoshi Makoto, Jung Tzyy-Ping, Makeig Scott

机构信息

Swartz Center of Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, San Diego, CA 92093-0559, USA; Institute of Noetic Sciences, Petaluma, CA, USA; CerCo, CNRS UMR5549, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse III, UPS, Toulouse, France.

Swartz Center of Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, San Diego, CA 92093-0559, USA.

出版信息

J Neurosci Methods. 2015 Jul 30;250:3-6. doi: 10.1016/j.jneumeth.2014.10.003. Epub 2014 Oct 22.

Abstract

BACKGROUD

With the advent of modern computing methods, modeling trial-to-trial variability in biophysical recordings including electroencephalography (EEG) has become of increasingly interest. Yet no widely used method exists for comparing variability in ordered collections of single-trial data epochs across conditions and subjects.

NEW METHOD

We have developed a method based on an ERP-image visualization tool in which potential, spectral power, or some other measure at each time point in a set of event-related single-trial data epochs are represented as color coded horizontal lines that are then stacked to form a 2-D colored image. Moving-window smoothing across trial epochs can make otherwise hidden event-related features in the data more perceptible. Stacking trials in different orders, for example ordered by subject reaction time, by context-related information such as inter-stimulus interval, or some other characteristic of the data (e.g., latency-window mean power or phase of some EEG source) can reveal aspects of the multifold complexities of trial-to-trial EEG data variability.

RESULTS

This study demonstrates new methods for computing and visualizing 'grand' ERP-image plots across subjects and for performing robust statistical testing on the resulting images. These methods have been implemented and made freely available in the EEGLAB signal-processing environment that we maintain and distribute.

摘要

背景

随着现代计算方法的出现,对包括脑电图(EEG)在内的生物物理记录中的逐次试验变异性进行建模变得越来越受关注。然而,目前还没有广泛使用的方法来比较不同条件和受试者下单次试验数据片段有序集合中的变异性。

新方法

我们开发了一种基于ERP图像可视化工具的方法,在该工具中,一组事件相关单次试验数据片段中每个时间点的电位、频谱功率或其他一些测量值被表示为颜色编码的水平线,然后将这些水平线堆叠以形成二维彩色图像。跨试验片段的移动窗口平滑可以使数据中原本隐藏的事件相关特征更易于察觉。以不同顺序堆叠试验,例如按受试者反应时间排序、按与上下文相关的信息(如刺激间隔)或数据的其他一些特征(例如潜伏期窗口平均功率或某些EEG源的相位)排序,可以揭示EEG数据逐次试验变异性的多重复杂性。

结果

本研究展示了用于计算和可视化跨受试者的“总体”ERP图像图以及对所得图像进行稳健统计检验的新方法。这些方法已在我们维护和分发的EEGLAB信号处理环境中实现并免费提供。

相似文献

2
Analysis and visualization of single-trial event-related potentials.
Hum Brain Mapp. 2001 Nov;14(3):166-85. doi: 10.1002/hbm.1050.
3
Brain Evoked Response Qualification Using Multi-Set Consensus Clustering: Toward Single-Trial EEG Analysis.
Brain Topogr. 2024 Nov;37(6):1010-1032. doi: 10.1007/s10548-024-01074-y. Epub 2024 Aug 20.
4
Parametric study of EEG sensitivity to phase noise during face processing.
BMC Neurosci. 2008 Oct 3;9:98. doi: 10.1186/1471-2202-9-98.
5
Detection of Unfocused EEG Epochs by the Application of Machine Learning Algorithm.
Sensors (Basel). 2024 Jul 25;24(15):4829. doi: 10.3390/s24154829.
6
Comparing ICA-based and single-trial topographic ERP analyses.
Brain Topogr. 2010 Jun;23(2):119-27. doi: 10.1007/s10548-010-0145-y. Epub 2010 Apr 27.
9
EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
J Neurosci Methods. 2004 Mar 15;134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.
10
Spatio-temporal common pattern: A companion method for ERP analysis in the time domain.
J Neurosci Methods. 2016 Jul 15;267:74-88. doi: 10.1016/j.jneumeth.2016.04.008. Epub 2016 Apr 16.

引用本文的文献

2
Habituation of auditory responses in young autistic and neurotypical children.
Autism Res. 2023 Oct;16(10):1903-1923. doi: 10.1002/aur.3022. Epub 2023 Sep 9.
3
"Neural Noise" in Auditory Responses in Young Autistic and Neurotypical Children.
J Autism Dev Disord. 2024 Feb;54(2):642-661. doi: 10.1007/s10803-022-05797-4. Epub 2022 Nov 25.
4
Neurofeedback for the Education of Children with ADHD and Specific Learning Disorders: A Review.
Brain Sci. 2022 Sep 14;12(9):1238. doi: 10.3390/brainsci12091238.
5
Advances in human intracranial electroencephalography research, guidelines and good practices.
Neuroimage. 2022 Oct 15;260:119438. doi: 10.1016/j.neuroimage.2022.119438. Epub 2022 Jul 2.
6
[Cross subject personality assessment based on electroencephalogram functional connectivity and domain adaptation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Apr 25;39(2):257-266. doi: 10.7507/1001-5515.202105033.
7
Riemannian classification of single-trial surface EEG and sources during checkerboard and navigational images in humans.
PLoS One. 2022 Jan 14;17(1):e0262417. doi: 10.1371/journal.pone.0262417. eCollection 2022.
8
Electrophysiological Evidence of Early Cortical Sensitivity to Human Conspecific Mimic Voice as a Distinct Category of Natural Sound.
J Speech Lang Hear Res. 2020 Oct 16;63(10):3539-3559. doi: 10.1044/2020_JSLHR-20-00063. Epub 2020 Sep 16.
9
Exploring the temporal dynamics of speech production with EEG and group ICA.
Sci Rep. 2020 Feb 28;10(1):3667. doi: 10.1038/s41598-020-60301-1.

本文引用的文献

1
Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study.
J Neurosci Methods. 2015 Jul 30;250:85-93. doi: 10.1016/j.jneumeth.2014.08.003. Epub 2014 Aug 13.
2
Comparison of averaging and regression techniques for estimating Event Related Potentials.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1680-3. doi: 10.1109/EMBC.2013.6609841.
3
Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.
Psychophysiology. 2011 Dec;48(12):1711-25. doi: 10.1111/j.1469-8986.2011.01273.x. Epub 2011 Sep 6.
4
EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.
Comput Intell Neurosci. 2011;2011:130714. doi: 10.1155/2011/130714. Epub 2011 May 5.
5
High-frequency Broadband Modulations of Electroencephalographic Spectra.
Front Hum Neurosci. 2009 Dec 23;3:61. doi: 10.3389/neuro.09.061.2009. eCollection 2009.
6
Medial prefrontal theta bursts precede rapid motor responses during visual selective attention.
J Neurosci. 2007 Oct 31;27(44):11949-59. doi: 10.1523/JNEUROSCI.3477-07.2007.
7
Nonparametric statistical testing of EEG- and MEG-data.
J Neurosci Methods. 2007 Aug 15;164(1):177-90. doi: 10.1016/j.jneumeth.2007.03.024. Epub 2007 Apr 10.
8
Electroencephalographic brain dynamics following manually responded visual targets.
PLoS Biol. 2004 Jun;2(6):e176. doi: 10.1371/journal.pbio.0020176. Epub 2004 Jun 15.
9
Mining event-related brain dynamics.
Trends Cogn Sci. 2004 May;8(5):204-10. doi: 10.1016/j.tics.2004.03.008.
10
EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
J Neurosci Methods. 2004 Mar 15;134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验