Delorme Arnaud, Miyakoshi Makoto, Jung Tzyy-Ping, Makeig Scott
Swartz Center of Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, San Diego, CA 92093-0559, USA; Institute of Noetic Sciences, Petaluma, CA, USA; CerCo, CNRS UMR5549, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse III, UPS, Toulouse, France.
Swartz Center of Computational Neuroscience, Institute of Neural Computation, University of California San Diego, La Jolla, San Diego, CA 92093-0559, USA.
J Neurosci Methods. 2015 Jul 30;250:3-6. doi: 10.1016/j.jneumeth.2014.10.003. Epub 2014 Oct 22.
With the advent of modern computing methods, modeling trial-to-trial variability in biophysical recordings including electroencephalography (EEG) has become of increasingly interest. Yet no widely used method exists for comparing variability in ordered collections of single-trial data epochs across conditions and subjects.
We have developed a method based on an ERP-image visualization tool in which potential, spectral power, or some other measure at each time point in a set of event-related single-trial data epochs are represented as color coded horizontal lines that are then stacked to form a 2-D colored image. Moving-window smoothing across trial epochs can make otherwise hidden event-related features in the data more perceptible. Stacking trials in different orders, for example ordered by subject reaction time, by context-related information such as inter-stimulus interval, or some other characteristic of the data (e.g., latency-window mean power or phase of some EEG source) can reveal aspects of the multifold complexities of trial-to-trial EEG data variability.
This study demonstrates new methods for computing and visualizing 'grand' ERP-image plots across subjects and for performing robust statistical testing on the resulting images. These methods have been implemented and made freely available in the EEGLAB signal-processing environment that we maintain and distribute.
随着现代计算方法的出现,对包括脑电图(EEG)在内的生物物理记录中的逐次试验变异性进行建模变得越来越受关注。然而,目前还没有广泛使用的方法来比较不同条件和受试者下单次试验数据片段有序集合中的变异性。
我们开发了一种基于ERP图像可视化工具的方法,在该工具中,一组事件相关单次试验数据片段中每个时间点的电位、频谱功率或其他一些测量值被表示为颜色编码的水平线,然后将这些水平线堆叠以形成二维彩色图像。跨试验片段的移动窗口平滑可以使数据中原本隐藏的事件相关特征更易于察觉。以不同顺序堆叠试验,例如按受试者反应时间排序、按与上下文相关的信息(如刺激间隔)或数据的其他一些特征(例如潜伏期窗口平均功率或某些EEG源的相位)排序,可以揭示EEG数据逐次试验变异性的多重复杂性。
本研究展示了用于计算和可视化跨受试者的“总体”ERP图像图以及对所得图像进行稳健统计检验的新方法。这些方法已在我们维护和分发的EEGLAB信号处理环境中实现并免费提供。