Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland.
Center for Mind and Brain, University of California -Davis, Davis, 95618, USA.
Brain Topogr. 2024 Nov;37(6):1010-1032. doi: 10.1007/s10548-024-01074-y. Epub 2024 Aug 20.
In event-related potential (ERP) analysis, it is commonly assumed that individual trials from a subject share similar properties and originate from comparable neural sources, allowing reliable interpretation of group-averages. Nevertheless, traditional group-level ERP analysis methods, including cluster analysis, often overlook critical information about individual subjects' neural processes due to using fixed measurement intervals derived from averaging. We developed a multi-set consensus clustering pipeline to examine cognitive processes at the individual subject level. Initially, consensus clustering from diverse methods was applied to single-trial EEG epochs of individual subjects. Subsequently, a second level of consensus clustering was performed across the trials of each subject. A newly modified time window determination method was then employed to identify individual subjects' ERP(s) of interest. We validated our method with simulated data for ERP components N2 and P3, and real data from a visual oddball task to confirm the P3 component. Our findings revealed that estimated time windows for individual subjects provide precise ERP identification compared to fixed time windows across all subjects. Additionally, Monte Carlo simulations with synthetic single-trial data demonstrated stable scores for the N2 and P3 components, confirming the reliability of our method. The proposed method enhances the examination of brain-evoked responses at the individual subject level by considering single-trial EEG data, thereby extracting mutual information relevant to the neural process. This approach offers a significant improvement over conventional ERP analysis, which relies on the averaging mechanism and fixed measurement interval.
在事件相关电位(ERP)分析中,通常假设来自同一被试的个体试验具有相似的特征,并且起源于可比较的神经源,从而可以对组平均值进行可靠的解释。然而,由于传统的基于群体的 ERP 分析方法(包括聚类分析)通常使用源自平均的固定测量间隔,因此忽略了个体被试神经过程的关键信息。我们开发了一种多集共识聚类管道,以检查个体被试水平的认知过程。首先,对个体被试的单试 EEG 时段应用来自不同方法的共识聚类。随后,在每个被试的试验中进行了第二级共识聚类。然后使用一种新修改的时间窗口确定方法来识别感兴趣的个体被试的 ERP。我们使用 N2 和 P3 两种 ERP 成分的模拟数据和视觉Oddball 任务的真实数据对我们的方法进行了验证,以确认 P3 成分。我们的研究结果表明,与所有被试的固定时间窗口相比,针对个体被试的估计时间窗口提供了更精确的 ERP 识别。此外,使用合成单试数据进行的蒙特卡罗模拟证明了 N2 和 P3 成分的稳定得分,从而验证了我们方法的可靠性。该方法通过考虑单试 EEG 数据,增强了对个体被试水平的脑诱发电响应的检查,从而提取与神经过程相关的互信息。与依赖于平均机制和固定测量间隔的传统 ERP 分析相比,这是一种重大改进。