Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles- Vrije Universiteit Brussel, Brussels, Belgium.
PLoS One. 2022 Jan 14;17(1):e0262417. doi: 10.1371/journal.pone.0262417. eCollection 2022.
Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field.
We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA.
We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.
不同的视觉刺激经典地用于触发视觉诱发电位,这些诱发电位由与显示图像内容相关的定义明确的成分组成。这些诱发成分是由正在进行的 EEG 信号的平均值产生的,其中添加和振荡机制有助于成分形态。诱发相关电位通常来自混合情况(功率变化和相位锁定),使得基础和临床解释变得困难。此外,总体平均方法产生的人工结构不能反映个体的特殊性。这促使人们采用新的方法,基于单试次分析,如最近在脑机接口领域中使用的方法。
我们假设 EEG 信号可能包含关于显示图像视觉特征的特定信息,并且这些独特特征可以通过基于黎曼几何的最先进的分类算法来识别。同样的分类算法也应用于 sLORETA 估计的偶极子源。
我们表明,我们的分类管道可以有效地在多个被试的单个 EEG 试验中区分不同视觉项目(棋盘格与 3D 导航图像)的显示。本方法使用表面 EEG 在跨被试和内被试分类方面分别达到了约 84%和 93%的单试次分类准确率。有趣的是,我们注意到,基于 sLORETA 源估计的分类算法在多个被试中无法推广(63%),这可能是由于 sLORETA 中使用的平均头部模型或随后的空间滤波未能提取出有区别的信息,但达到了 82%的内被试分类准确率。