Rayner Cassie L, Gole Glen A, Bottle Steven E, Barnett Nigel L
Queensland Eye Institute, South Brisbane, Queensland, Australia.
Department of Paediatrics & Child Health, University of Queensland, Brisbane, Queensland, Australia.
Exp Eye Res. 2014 Dec;129:48-56. doi: 10.1016/j.exer.2014.10.013. Epub 2014 Oct 25.
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress.
生物系统氧化还原状态的改变与包括癌症、缺血再灌注(I/R)损伤和神经退行性变在内的多种疾病的发病机制有关。在代谢应激状态下,如缺血/再灌注时,活性氧(ROS)的产生超过了细胞固有的抗氧化能力,从而损害重要的细胞成分。因此,量化体内ROS变化的能力对于理解其生物学作用至关重要。在此,我们评估了一种新型可逆性前荧光探针(含有氧化还原敏感的氮氧化物部分,甲酯四乙基罗丹明氮氧化物,ME-TRN)作为视网膜氧化状态的体内实时报告分子的适用性。该探针反应的可逆性提供了一个独特的优势,即能够实时监测氧化和还原方向的氧化还原变化。在玻璃体内注射ME-TRN探针后,我们使用已建立的完全急性视网膜缺血再灌注模型在大鼠视网膜中诱导ROS产生。恢复血流后,使用Micron III啮齿动物眼底荧光成像系统对视网膜进行成像,以量化探针的氧化还原反应。在再灌注的前60分钟内荧光强度下降。视网膜抗氧化剂叶黄素改善了ROS诱导的探针荧光变化。非缺血眼的荧光强度没有明显变化。这种新型探针和成像技术对氧化变化提供了可逆和实时反应,并且可能允许对一系列与氧化应激相关疾病有潜在益处的抗氧化疗法进行体内测试。